Skip to main content

Chargym: An EV Charging Station Model for Controller Benchmarking

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops (AIAI 2022)

Abstract

This paper presents Chargym, a Python-based openai-gym compatible environment, that simulates the charging dynamics of a grid connected Electrical Vehicle (EV) charging station. Chargym transforms the classic EV charging problem into a Reinforcement Learning setup that can be used for benchmarking of various and off-the-shelf control and optimization algorithms enabling both single and multiple agent formulations. The incorporated charging station dynamics are presented with a brief explanation of the system parameters and function of the technical equipment. Moreover, we describe the structure of the used framework, highlighting the key features and data models that provide the necessary inputs for optimal control decisions. Finally, an experimental performance analysis is provided using two different state-of-the-art Reinforcement Learning (RL) algorithms validating the operation of the provided environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma, Z., Callaway, D.S., Hiskens, I.A.: Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21(1), 67–78 (2011)

    Article  Google Scholar 

  2. Han, S., Han, S.H., Sezaki, K.: Design of an optimal aggregator for vehicle-to-grid regulation service. In: 2010 Innovative Smart Grid Technologies (ISGT). IEEE (2010)

    Google Scholar 

  3. Korkas, C.D., Baldi, S., Michailidis, P., Kosmatopoulos, E.B.: A cognitive stochastic approximation approach to optimal charging schedule in electric vehicle stations. In: 2017 25th Mediterranean Conference on Control and Automation (MED), pp. 484–489. IEEE, July 2017

    Google Scholar 

  4. Korkas, C.D., Baldi, S., Yuan, S., Kosmatopoulos, E.B.: An adaptive learning-based approach for nearly optimal dynamic charging of electric vehicle fleets. IEEE Trans. Intell. Transp. Syst. 19(7), 2066–2075 (2017)

    Article  Google Scholar 

  5. Qian, T., Shao, C., Wang, X., Shahidehpour, M.: Deep reinforcement learning for EV charging navigation by coordinating smart grid and intelligent transportation system. IEEE Trans. Smart Grid 11(2), 1714–1723 (2019)

    Article  Google Scholar 

  6. Bhatti, A.R., et al.: Optimized sizing of photovoltaic grid-connected electric vehicle charging system using particle swarm optimization. Int. J. Energy Res. 43(1), 500–522 (2019)

    Article  Google Scholar 

  7. Wan, Z., Li, H., He, H., Prokhorov, D.: Model-free real-time EV charging scheduling based on deep reinforcement learning. IEEE Trans. Smart Grid 10(5), 5246–5257 (2018)

    Article  Google Scholar 

  8. Arif, S.M., Lie, T.T., Seet, B.C., Ayyadi, S., Jensen, K.: Review of electric vehicle technologies, charging methods, standards and optimization techniques. Electronics 10(16), 1910 (2021)

    Article  Google Scholar 

  9. Zheng, Y., Song, Y., Hill, D.J., Meng, K.: Online distributed MPC-based optimal scheduling for EV charging stations in distribution systems. IEEE Trans. Ind. Inf. 15(2), 638–649 (2018)

    Article  Google Scholar 

  10. Tang, W., Zhang, Y.J.: A model predictive control approach for low-complexity electric vehicle charging scheduling: optimality and scalability. IEEE Trans. Power Syst. 32(2), 1050–1063 (2016)

    Article  MathSciNet  Google Scholar 

  11. Zhang, M., Chen, J.: The energy management and optimized operation of electric vehicles based on microgrid. IEEE Trans. Power Deliv. 29(3), 1427–1435 (2014)

    Article  Google Scholar 

  12. Bardi, M., Dolcetta, I.C.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, vol. 12. Birkhäuser, Boston (1997)

    Book  Google Scholar 

  13. Rigas, E.S., Karapostolakis, S., Bassiliades, N., Ramchurn, S.D.: EVLibSim: a tool for the simulation of electric vehicles’ charging stations using the EVLib library. Simul. Model. Pract. Theory 87, 99–119 (2018)

    Article  Google Scholar 

  14. Saxena, S.: Vehicle-to-grid Simulator (No. V2G-Sim; 005701MLTPL00). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) (2013)

    Google Scholar 

  15. Lee, Z.J., Johansson, D., Low, S.H.: ACN-sim: an open-source simulator for data-driven electric vehicle charging research. In: 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). IEEE (2019)

    Google Scholar 

  16. Díaz de Arcaya, A., et al.: Simulation platform for coordinated charging of electric vehicles (2015)

    Google Scholar 

  17. Strehler, M., Merting, S., Schwan, C.: Energy-efficient shortest routes for electric and hybrid vehicles. Transp. Res. Part B Methodol. 103, 111–135 (2017)

    Article  Google Scholar 

  18. Mou, Y., et al.: Decentralized optimal demand-side management for PHEV charging in a smart grid. IEEE Trans. Smart Grid 6(2), 726–736 (2014)

    Article  Google Scholar 

  19. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning (2015). arXiv preprint arXiv:1509.02971

  20. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). arXiv preprint arXiv:1707.06347

  21. Bae, S., Kwasinski, A.: Spatial and temporal model of electric vehicle charging demand. IEEE Trans. Smart Grid 3(1), 394–403 (2011)

    Article  Google Scholar 

  22. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-Baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. (2021)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support of this work by the European Commission H2020-EU.2.1.5.2., Turning traditional reactive buildings into proactive ones, under contract 958284 (PRECEPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Korkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karatzinis, G. et al. (2022). Chargym: An EV Charging Station Model for Controller Benchmarking. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics