Skip to main content

Abstract

Markov Chain Monte Carlo techniques are used to generate samples that closely approximate a given multivariate probability distribution, with the function not having to be normalised in the case of certain algorithms such as Metropolis-Hastings. As with other Monte Carlo techniques, MCMC employs repeated random sampling to exploit the law of large numbers. Samples are generated by running a Markov Chain, which is created such that its stationary distribution follows the input function, for which a proposal distribution is used. This approach may be used for optimization tasks, for approximating solutions to non-deterministic polynomial time problems, for estimating integrals using importance sampling, and for cryptographic decoding. This paper serves as an introduction to the MCMC techniques and some of its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  2. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, vol. 31. Springer, New York (2013). https://doi.org/10.1007/978-3-030-45982-6

    Book  MATH  Google Scholar 

  3. Chen, J., Rosenthal, J.S.: Decrypting classical cipher text using Markov chain Monte Carlo. Stat. Comput. 22(2), 397–413 (2012). https://doi.org/10.1007/s11222-011-9232-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995). https://doi.org/10.1080/00031305.1995.10476177

    Article  Google Scholar 

  5. Cipra, B.A.: The best of the 20th century: editors name top 10 algorithms. SIAM News 33(4), 1–2 (2000)

    Google Scholar 

  6. Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Am. Math. Soc. 46(2), 179–205 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gelfand, A.E.: Gibbs sampling. J. Am. Stat. Assoc. 95(452), 1300–1304 (2000). https://doi.org/10.1080/01621459.2000.10474335

    Article  MathSciNet  MATH  Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984). https://doi.org/10.1109/TPAMI.1984.4767596

    Article  MATH  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  10. Haasteren, R.V.: Marginal likelihood calculation with MCMC methods. In: Gravitational Wave Detection and Data Analysis for Pulsar Timing Arrays, pp. 99–120. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39599-4_5

  11. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  12. Huang, H., Yang, W.: Strong law of large numbers for Markov chains indexed by an infinite tree with uniformly bounded degree. Sci. China Ser. A: Math. 51(2), 195–202 (2008)

    Article  MathSciNet  Google Scholar 

  13. Kaji, T., Ročková, V.: Metropolis-hastings via classification. J. Am. Stat. Assoc., 1–33 (2022). https://doi.org/10.1080/01621459.2022.2060836

  14. Karras, C., Karras, A.: DBSOP: an efficient heuristic for speedy MCMC sampling on polytopes. arXiv preprint arXiv:2203.10916 (2022). https://doi.org/10.48550/arXiv.2203.10916

  15. Karras, C., Karras, A., Sioutas, S.: Pattern recognition and event detection on IoT data-streams. arXiv preprint arXiv:2203.01114 (2022). https://doi.org/10.48550/arXiv.2203.01114

  16. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  17. Martino, L., Elvira, V., Luengo, D., Corander, J., Louzada, F.: Orthogonal parallel MCMC methods for sampling and optimization. Digital Signal Process. 58, 64–84 (2016). https://doi.org/10.1016/j.dsp.2016.07.013

    Article  Google Scholar 

  18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  19. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press, Cambridge (2012)

    MATH  Google Scholar 

  20. Revuz, D.: Markov Chains. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  21. Ripley, B.D.: Stochastic Simulation. John Wiley & Sons, Hoboken (2009)

    MATH  Google Scholar 

  22. Wolfinger, R., O’connell, M.: Generalized linear mixed models a pseudo-likelihood approach. J. Stat. Comput. Simul. 48(3–4), 233–243 (1993). https://doi.org/10.1080/00949659308811554

    Article  MATH  Google Scholar 

  23. Xu, J.-G., Zhao, Y., Chen, J., Han, C.: A structure learning algorithm for bayesian network using prior knowledge. J. Comput. Sci. Technol. 30(4), 713–724 (2015). https://doi.org/10.1007/s11390-015-1556-8

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Karras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karras, C., Karras, A., Avlonitis, M., Sioutas, S. (2022). An Overview of MCMC Methods: From Theory to Applications. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics