Skip to main content

Abstract

Community detection is a prominent process on networks and has been extensively studied on static networks the last 25 years. This problem concerns the structural partitioning of networks into classes of nodes that are more densely connected when compared to the rest of the network. However, a plethora of real-world networks are highly dynamic, in the sense that entities (nodes) as well as relations between them (edges) constantly change. As a result, many solutions have also been applied in dynamic/temporal networks under various assumptions concerning the modeling of time as well as the emerging communities. The problem becomes quite harder when the notion of time is introduced, since various unseen problems in the static case arise, like the identity problem. In the last few years, a few surveys have been conducted regarding community detection in time-evolving networks. In this survey, our objective is to give a rather condensed but up-to-date overview, when compared to previous surveys, of the current state-of-the-art regarding community detection in temporal networks. We also extend the previous classification of the algorithmic approaches for the problem by discerning between global and local dynamic community detection. The former aims at identifying the evolution of all communities and the latter aims at identifying the evolution of a partition around a set of seed nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The avalanche effect describes the phenomenon when communities can experience substantial drifts compared to what a static algorithm would find on the static network at a particular time instance.

References

  1. Akachar, E., Ouhbi, B., Frikh, B.: ACSIMCD: a 2-phase framework for detecting meaningful communities in dynamic social networks. Futur. Gener. Comput. Syst. 125, 399–420 (2021)

    Article  Google Scholar 

  2. Aynaud, T., Fleury, E., Guillaume, J.-L., Wang, Q.: Communities in evolving networks: definitions, detection, and analysis techniques. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds.) Dynamics on and of Complex Networks, vol. 2, pp. 159–200. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6729-8_9

    Chapter  Google Scholar 

  3. Baltsou, G., Tsichlas, K.: Dynamic community detection with anchors (2022)

    Google Scholar 

  4. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic complex networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds.) CompleNet 2010. CCIS, vol. 116, pp. 196–207. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25501-4_20

    Chapter  Google Scholar 

  5. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  6. Boudebza, S., Cazabet, R., Azouaou, F., Nouali, O.: OLCPM: an online framework for detecting overlapping communities in dynamic social networks. Comput. Commun. 123, 36–51 (2018)

    Article  Google Scholar 

  7. Bouhatem, F., Hadj, A.A.E., Souam, F., Dafeur, A.: Incremental methods for community detection in both fully and growing dynamic networks. Acta Universitatis Sapientiae Informatica 13(2), 220–250 (2021)

    Article  Google Scholar 

  8. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  Google Scholar 

  9. Chen, Z., Sun, A., Xiao, X.: Incremental community detection on large complex attributed network. ACM Trans. Knowl. Discov. Data (TKDD) 15(6), 1–20 (2021)

    Article  Google Scholar 

  10. Chen, Z., Wilson, K.A., Jin, Y., Hendrix, W., Samatova, N.F.: Detecting and tracking community dynamics in evolutionary networks. In: 2010 IEEE International Conference on Data Mining Workshops, pp. 318–327 (2010)

    Google Scholar 

  11. Cordeiro, M., Sarmento, R.P., Gama, J.: Dynamic community detection in evolving networks using locality modularity optimization. Soc. Netw. Anal. Min. 6(1), 1–20 (2016). https://doi.org/10.1007/s13278-016-0325-1

    Article  Google Scholar 

  12. Dakiche, N., Tayeb, F.B.-S., Slimani, Y., Benatchba, K.: Tracking community evolution in social networks: a survey. Inf. Process. Manage. 56(3), 1084–1102 (2019)

    Article  Google Scholar 

  13. Folino, F., Pizzuti, C.: An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE Trans. Knowl. Data Eng. 26(8), 1838–1852 (2013)

    Article  Google Scholar 

  14. Gao, W., Luo, W., Bu, C.: Evolutionary community discovery in dynamic networks based on leader nodes. In: 2016 International Conference on Big Data and Smart Computing (BigComp), pp. 53–60 (2016)

    Google Scholar 

  15. Gauvin, L., Panisson, A., Cattuto, C.: Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9(1), e86028 (2014)

    Article  Google Scholar 

  16. Ghasemian, A., Zhang, P., Clauset, A., Moore, C., Peel, L.: Detectability thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev. X 6(3), 031005 (2016)

    Google Scholar 

  17. Giatsoglou, M., Vakali, A.: Capturing social data evolution using graph clustering. IEEE Internet Comput. 17(1), 74–79 (2013)

    Article  Google Scholar 

  18. Guo, C., Wang, J., Zhang, Z.: Evolutionary community structure discovery in dynamic weighted networks. Phys. A 413, 565–576 (2014)

    Article  Google Scholar 

  19. Guo, Q., Zhang, L., Wu, B., Zeng, X.: Dynamic community detection based on distance dynamics. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 329–336 (2016)

    Google Scholar 

  20. Hartmann, T., Kappes, A., Wagner, D.: Clustering evolving networks. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 280–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_9

    Chapter  Google Scholar 

  21. Held, P., Kruse, R.: Detecting overlapping community hierarchies in dynamic graphs. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1063–1070. IEEE (2016)

    Google Scholar 

  22. Himmel, A.-S., Molter, H., Niedermeier, R., Sorge, M.: Enumerating maximal cliques in temporal graphs. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 337–344. IEEE (2016)

    Google Scholar 

  23. Huang, X., Chen, D., Ren, T., Wang, D.: A survey of community detection methods in multilayer networks. Data Min. Knowl. Disc. 35(1), 1–45 (2020). https://doi.org/10.1007/s10618-020-00716-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Mohammadmosaferi, K.K., Naderi, H.: Evolution of communities in dynamic social networks: an efficient map-based approach. Expert Syst. Appl. 147, 113221 (2020)

    Article  Google Scholar 

  25. Khorasgani, R.R., Chen, J., Zaiane, O.R.: Top leaders community detection approach in information networks. In: 4th SNA-KDD Workshop on Social Network Mining and Analysis. Citeseer (2010)

    Google Scholar 

  26. Li, W., Zhou, X., Yang, C., Fan, Y., Wang, Z., Liu, Y.: Multi-objective optimization algorithm based on characteristics fusion of dynamic social networks for community discovery. Inf. Fusion 79, 110–123 (2022)

    Article  Google Scholar 

  27. Liakos, P., Papakonstantinopoulou, K., Stefou, T., Delis, A.: On compressing temporal graphs (2022)

    Google Scholar 

  28. Matias, C., Miele,V.: Statistical clustering of temporal networks through a dynamic stochastic block model series B statistical methodology (2017)

    Google Scholar 

  29. Matias, C., Rebafka, T., Villers, F.: A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika 105(3), 665–680 (2018)

    Article  MathSciNet  Google Scholar 

  30. Morini, M., Flandrin, P., Fleury, E., Venturini, T., Jensen, P.: Revealing evolutions in dynamical networks. arXiv preprint arXiv:1707.02114 (2017)

  31. Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Google Scholar 

  32. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 1–37 (2018)

    Article  Google Scholar 

  33. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2016). https://doi.org/10.1007/s10994-016-5582-8

    Article  MathSciNet  Google Scholar 

  34. Rozenshtein, P., Tatti, N., Gionis, A.: Discovering dynamic communities in interaction networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 678–693. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_43

    Chapter  Google Scholar 

  35. Safdari, H., Contisciani, M., De Bacco, C.: Reciprocity, community detection, and link prediction in dynamic networks. J. Phys. Complex. 3(1), 015010 (2022)

    Article  Google Scholar 

  36. Seifikar, M., Farzi, S., Barati, M.: C-Blondel: an efficient Louvain-based dynamic community detection algorithm. IEEE Trans. Comput. Soc. Syst. 7(2), 308–318 (2020)

    Article  Google Scholar 

  37. Shao, J., Han, Z., Yang, Q., Zhou, T.: Community detection based on distance dynamics. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1075–1084 (2015)

    Google Scholar 

  38. Xing, S., Cheng, J., Yang, H., Leng, M., Zhang, W., Chen, X.: IncNSA: detecting communities incrementally from time-evolving networks based on node similarity. Int. J. Mod. Phys. C 31(07), 2050094 (2020)

    Article  MathSciNet  Google Scholar 

  39. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: parameter-free mining of large time-evolving graphs. In: KDD 2007, pp. 687–696. Association for Computing Machinery, New York (2007)

    Google Scholar 

  40. Sun, Y., Tang, J., Pan, L., Li, J.: Matrix based community evolution events detection in online social networks. In: 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), pp. 465–470. IEEE (2015)

    Google Scholar 

  41. Sun, Z., Sheng, J., Wang, B., Ullah, A., Khawaja, F.R.: Identifying communities in dynamic networks using information dynamics. Entropy 22(4), 425 (2020)

    Article  MathSciNet  Google Scholar 

  42. Sun, Z., et al.: Dynamic community detection based on the Matthew effect. Physica A Stat. Mech. Appl. 597, 127315 (2022)

    Article  Google Scholar 

  43. Yin, Y., Zhao, Y., Li, H., Dong, X.: Multi-objective evolutionary clustering for large-scale dynamic community detection. Inf. Sci. 549, 269–287 (2021)

    Article  MathSciNet  Google Scholar 

  44. Zakrzewska, A., Bader, D.A.: A dynamic algorithm for local community detection in graphs. In: ASONAM 2015, pp. 559–564 (2015)

    Google Scholar 

  45. Zakrzewska, A., Bader, D.A.: Tracking local communities in streaming graphs with a dynamic algorithm. Soc. Netw. Anal. Min. 6(1), 1–16 (2016). https://doi.org/10.1007/s13278-016-0374-5

    Article  Google Scholar 

  46. Zarayeneh, N., Kalyanaraman, A.: A fast and efficient incremental approach toward dynamic community detection. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019, pp. 9–16. Association for Computing Machinery, New York (2019)

    Google Scholar 

  47. Zardi, H., Alharbi, B., Karamti, W., Karamti, H., Alabdulkreem, E.: Detection of community structures in dynamic social networks based on message distribution and structural/attribute similarities. IEEE Access 9, 67028–67041 (2021)

    Article  Google Scholar 

  48. Zhuang, D., Chang, J.M., Li, M.: Dynamo: dynamic community detection by incrementally maximizing modularity. IEEE Trans. Knowl. Data Eng. 33(5), 1934–1945 (2019)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project Number: 3480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Christopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christopoulos, K., Tsichlas, K. (2022). State-of-the-Art in Community Detection in Temporal Networks. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics