Skip to main content

Supporting Trustworthy Artificial Intelligence via Bayesian Argumentation

  • Conference paper
  • First Online:
AIxIA 2021 – Advances in Artificial Intelligence (AIxIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13196))

  • 867 Accesses

Abstract

This paper introduces argumentative-generative models for statistical learning—i.e., generative statistical models seen from a Bayesian argumentation perspective—and shows how they support trustworthy artificial intelligence (AI). Generative Bayesian approaches are already very promising for achieving robustness against adversarial attacks, a fundamental component of trustworthy AI. This paper shows how Bayesian argumentation can help us achieve transparent assessments of epistemic uncertainty and testability of models, two necessary ingredients for trustworthy AI. We also discuss the limitations of this approach, notably those traditionally linked to Bayesian methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “An intelligence that, at a given instant, could comprehend all the forces by which nature is animated and the respective situation of the beings that make it up” [17, p.2].

References

  1. Amershi, S., et al.: Guidelines for human-AI interaction. In: Conference on Human Factors in Computing Systems - Proceedings, pp. 1–13. Association for Computing Machinery, New York, USA (2019)

    Google Scholar 

  2. Bansal, G., Nushi, B., Kamar, E., Lasecki, W., Weld, D., Horvitz, E.: Beyond accuracy: the role of mental models in human-AI team performance. In: HCOMP. AAAI (2019)

    Google Scholar 

  3. Bansal, G., Nushi, B., Kamar, E., Weld, D.S., Lasecki, W.S., Horvitz, E.: Updates in human-AI teams: understanding and addressing the performance/compatibility tradeoff. In: AAAI, pp. 2429–2437 (2019)

    Google Scholar 

  4. Bishop, C. M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning. ISS, Springer, New York (2006). https://doi.org/10.1007/978-0-387-45528-0_9

  5. Cerutti, F., Kaplan, L.M., Kimmig, A., Sensoy, M.: Probabilistic logic programming with beta-distributed random variables. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 7769–7776 (2019)

    Google Scholar 

  6. Copeland, A.E., et al.: What does it take to become an academic plastic surgeon in Canada: hiring trends over the last 50 years. Plastic Surgery (to appear)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a Large-Scale Hierarchical Image Database. In: CVPR09 (2009)

    Google Scholar 

  8. Depaoli, S., Van de Schoot, R.: Improving transparency and replication in Bayesian statistics: the WAMBS-checklist. Psychol. Methods 22(2), 240 (2017)

    Article  Google Scholar 

  9. Hahn, U., Hornikx, J.: A normative framework for argument quality: argumentation schemes with a Bayesian foundation. Synthese 193(6), 1833–1873 (2015). https://doi.org/10.1007/s11229-015-0815-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Hahn, U., Oaksford, M.: The rationality of informal argumentation: a Bayesian approach to reasoning fallacies. Psychol. Rev. 114(3), 704–732 (2007)

    Article  Google Scholar 

  11. Hahn, U., Oaksford, M., Harris, A.J.L.: Testimony and argument: a Bayesian perspective. In: Zenker, F. (ed.) Bayesian Argumentation. SL, vol. 362, pp. 15–38. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5357-0_2

    Chapter  Google Scholar 

  12. Hemilä, H., Chalker, E.: Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J. Intensive Care 8(1), 15 (2020)

    Article  Google Scholar 

  13. Hora, S.C.: Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management. Reliab. Eng. Syst. Saf. 54(2), 217–223 (1996)

    Article  Google Scholar 

  14. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: a tutorial introduction (2019)

    Google Scholar 

  15. Kaplan, L.M., Ivanovska, M.: Efficient belief propagation in second-order Bayesian networks for singly-connected graphs. Int. J. Approximate Reasoning 93, 132–152 (2018)

    Article  MathSciNet  Google Scholar 

  16. Kocielnik, R., Amershi, S., Bennett, P.N.: Will you accept an imperfect AI? exploring designs for adjusting end-user expectations of AI systems. In: Conference on Human Factors in Computing Systems - Proceedings, pp. 1–14. Association for Computing Machinery, New York, USA (2019)

    Google Scholar 

  17. Laplace, P.S.: A Philosophical Essay on Probabilities. Springer, Heidelberg (1825). Translator: Dale, A.I. (1995)

    Google Scholar 

  18. Mehmetoglu, M., Venturini, S.: Structural Equation Modelling with Partial Least Squares Using Stata and R. CRC Press, Boca Raton (2021)

    Book  Google Scholar 

  19. Mohammadian, M., Javed, Z.: Intelligent evaluation of test suites for developing efficient and reliable software. Int. J. Parallel, Emergent Distrib. Syst. 1–30 (2019)

    Google Scholar 

  20. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artif. Intell. 133(1–2), 233–282 (2001)

    Article  MathSciNet  Google Scholar 

  21. Popper, K.R.: Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, 5th edn. (1989)

    Google Scholar 

  22. Sensoy, M., Kaplan, L., Cerutti, F., Saleki, M.: Uncertainty-aware deep classifiers using generative models. In: The Thirty-Forth AAAI Conference on Artificial Intelligence, AAAI 2020 (2020)

    Google Scholar 

  23. Sensoy, M., Kaplan, L.M., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 Dec 2018, Montréal, Canada, pp. 3183–3193 (2018)

    Google Scholar 

  24. Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D.: No classification without representation: assessing geodiversity issues in open data sets for the developing world. In: NIPS 2017 Workshop on Machine Learning for the Developing World (2017)

    Google Scholar 

  25. Shannon, C.E.: Communication in the presence of noise. Proceed. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  26. Tomsett, R., Braines, D., Harborne, D., Preece, A.D., Chakraborty, S.: Interpretable to whom? a role-based model for analyzing interpretable machine learning systems. In: 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018) (2018)

    Google Scholar 

  27. Toniolo, A., et al.: Supporting reasoning with different types of evidence in intelligence analysis. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2 (2015)

    Google Scholar 

  28. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528 (2011)

    Google Scholar 

  29. Vassiliades, A., Bassiliades, N., Patkos, T.: Argumentation and explainable artificial intelligence: a survey. Knowl. Eng. Rev. 36, e5 (2021)

    Article  Google Scholar 

  30. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, NY (2008)

    Book  Google Scholar 

  31. Walton, D.: Rules for plausible reasoning. Informal Logic, 14(1) (1992)

    Google Scholar 

  32. Xu, B., Lin, B.: Investigating drivers of CO2 emission in China’s heavy industry: a quantile regression analysis. Energy 206, 118159 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Italian Ministry of Research through a Rita Levi-Montalcini Personal Fellowship (D.M. n. 285, 29/03/2019) and by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Cerutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cerutti, F. (2022). Supporting Trustworthy Artificial Intelligence via Bayesian Argumentation. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. Lecture Notes in Computer Science(), vol 13196. Springer, Cham. https://doi.org/10.1007/978-3-031-08421-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08421-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08420-1

  • Online ISBN: 978-3-031-08421-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics