Skip to main content

Exploration-Intensive Distractors: Two Environment Proposals and a Benchmarking

  • Conference paper
  • First Online:
AIxIA 2021 – Advances in Artificial Intelligence (AIxIA 2021)

Abstract

Sparse-reward environments are famously challenging for deep reinforcement learning (DRL) algorithms. Yet, the prospect of solving tasks with intrinsically sparse rewards in an end-to-end fashion and without any extra reward engineering is highly appealing. Such aspiration has recently led to the development of numerous DRL algorithms able to handle reward sparsity to some extent. Some methods have even gone one step further and have tackled sparse-reward tasks involving different kinds of distractors (e.g., a broken TV, a self-moving phantom object and many more). In this work, we put forward two motivating new sparse-reward environments containing the so-far largely overlooked class of exploration-intensive distractors. Furthermore, we conduct a benchmarking that reveals that state-of-the-art algorithms are not yet all-around suitable for solving our proposed environments.

We acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/JimCatacora/bespa.

References

  1. Andrychowicz, M., et al.: Hindsight experience replay. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, pp. 5055–5065. Curran Associates Inc. (2017)

    Google Scholar 

  2. Badia, A.P., et al.: Agent57: outperforming the atari human benchmark. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Machine Learning Research, vol. 119, pp. 507–517. PMLR (2020). http://proceedings.mlr.press/v119/badia20a.html

  3. Badia, A.P., et al.: Never give up: learning directed exploration strategies. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=Sye57xStvB

  4. Bellemare, M.G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.: Unifying count-based exploration and intrinsic motivation. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, Red Hook, NY, USA, pp. 1479–1487. Curran Associates Inc. (2016)

    Google Scholar 

  5. Burda, Y., Edwards, H., Pathak, D., Storkey, A.J., Darrell, T., Efros, A.A.: Large-scale study of curiosity-driven learning. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=rJNwDjAqYX

  6. Burda, Y., Edwards, H., Storkey, A.J., Klimov, O.: Exploration by random network distillation. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=H1lJJnR5Ym

  7. Choi, J., et al.: Contingency-aware exploration in reinforcement learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HyxGB2AcY7

  8. Espeholt, L., et al.: IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Machine Learning Research, 10–15 Jul 2018, vol. 80, pp. 1407–1416. PMLR (2018). http://proceedings.mlr.press/v80/espeholt18a.html

  9. Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: Diversity is all you need: learning skills without a reward function. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=SJx63jRqFm

  10. Florensa, C., Held, D., Geng, X., Abbeel, P.: Automatic goal generation for reinforcement learning agents. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Machine Learning Research, 10–15 July 2018, vol. 80, pp. 1515–1528. PMLR (2018). http://proceedings.mlr.press/v80/florensa18a.html

  11. Florensa, C., Held, D., Wulfmeier, M., Zhang, M., Abbeel, P.: Reverse curriculum generation for reinforcement learning. In: Levine, S., Vanhoucke, V., Goldberg, K. (eds.) Proceedings of the 1st Annual Conference on Robot Learning. Machine Learning Research, 13–15 November 2017, vol. 78, pp. 482–495. PMLR (2017). http://proceedings.mlr.press/v78/florensa17a.html

  12. Gu, S., Holly, E., Lillicrap, T.P., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396 (2016)

    Google Scholar 

  13. Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning. In: Robotics: Science and Systems (2019). https://doi.org/10.15607/RSS.2019.XV.011

  14. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: McIlraith, S.A., Weinberger, K.Q. (eds.) AAAI, pp. 3215–3222. AAAI Press (2018). http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#HesselMHSODHPAS18

  15. Horgan, D., et al.: Distributed prioritized experience replay. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1Dy---0Z

  16. Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., Munos, R.: Recurrent experience replay in distributed reinforcement learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=r1lyTjAqYX

  17. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: ViZDoom: a doom-based AI research platform for visual reinforcement learning. In: IEEE Conference on Computational Intelligence and Games, Santorini, Greece, pp. 341–348. IEEE, September 2016. http://arxiv.org/abs/1605.02097. The best paper award

  18. Kim, Y., Nam, W., Kim, H., Kim, J.H., Kim, G.: Curiosity-bottleneck: exploration by distilling task-specific novelty. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Machine Learning Research, 09–15 June 2019, vol. 97, pp. 3379–3388. PMLR (2019). http://proceedings.mlr.press/v97/kim19c.html

  19. Laversanne-Finot, A., Péré, A., Oudeyer, P.: Curiosity driven exploration of learned disentangled goal spaces. In: Proceedings of the 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29–31 October 2018. Machine Learning Research, vol. 87, pp. 487–504. PMLR (2018). http://proceedings.mlr.press/v87/laversanne-finot18a.html

  20. Lee, L., Eysenbach, B., Parisotto, E., Xing, E.P., Levine, S., Salakhutdinov, R.: Efficient exploration via state marginal matching. CoRR abs/1906.05274 (2019). http://arxiv.org/abs/1906.05274

  21. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17, 39:1–39:40 (2015)

    Google Scholar 

  22. Machado, M.C., Bellemare, M.G., Bowling, M.: A laplacian framework for option discovery in reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning, ICML’17, vol. 70, pp. 2295–2304. JMLR.org (2017)

    Google Scholar 

  23. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  24. O’Donoghue, B., Osband, I., Munos, R., Mnih, V.: The uncertainty bellman equation and exploration. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Machine Learning Research, vol. 80, pp. 3836–3845. PMLR (2018). http://proceedings.mlr.press/v80/o-donoghue18a.html

  25. Oh, J., Guo, Y., Singh, S., Lee, H.: Self-imitation learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Machine Learning Research, 10–15 July 2018, vol. 80, pp. 3878–3887. PMLR (2018). http://proceedings.mlr.press/v80/oh18b.html

  26. Osband, I., Blundell, C., Pritzel, A., Roy, B.V.: Deep exploration via bootstrapped DQN. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, Red Hook, NY, USA, pp. 4033–4041. Curran Associates Inc. (2016)

    Google Scholar 

  27. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 488–489 (2017)

    Google Scholar 

  28. Savinov, N., et al.: Episodic curiosity through reachability. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=SkeK3s0qKQ

  29. Schrittwieser, J., et al.: Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588(7839), 604–609 (2020). https://doi.org/10.1038/s41586-020-03051-4

    Article  Google Scholar 

  30. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017). http://arxiv.org/abs/1707.06347

  31. Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., Pathak, D.: Planning to explore via self-supervised world models. In: International Conference on Machine Learning (2020)

    Google Scholar 

  32. Silver, D., et al.: Mastering the game of go without human knowledge. Nat. 550, 354–359 (2017)

    Article  Google Scholar 

  33. Song, Y., et al.: Mega-reward: achieving human-level play without extrinsic rewards. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5826–5833, April 2020. https://doi.org/10.1609/aaai.v34i04.6040. https://ojs.aaai.org/index.php/AAAI/article/view/6040

  34. Stanton, C., Clune, J.: Deep curiosity search: intra-life exploration improves performance on challenging deep reinforcement learning problems. CoRR abs/1806.00553 (2018). http://arxiv.org/abs/1806.00553

  35. Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam, A., Fergus, R.: Intrinsic motivation and automatic curricula via asymmetric self-play. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=SkT5Yg-RZ

  36. Vezhnevets, A.S., et al.: Feudal networks for hierarchical reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning, ICML’17, vol. 70, pp. 3540–3549. JMLR.org (2017)

    Google Scholar 

  37. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019). https://doi.org/10.1038/s41586-019-1724-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Martin Catacora Ocana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ocana, J.M.C., Capobianco, R., Nardi, D. (2022). Exploration-Intensive Distractors: Two Environment Proposals and a Benchmarking. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. Lecture Notes in Computer Science(), vol 13196. Springer, Cham. https://doi.org/10.1007/978-3-031-08421-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08421-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08420-1

  • Online ISBN: 978-3-031-08421-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics