Skip to main content

Kern: A Labeling Environment for Large-Scale, High-Quality Training Data

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2022)

Abstract

The lack of large-scale, high-quality training data is a significant bottleneck in supervised learning. We introduce kern, a labeling environment used by machine learning experts and subject matter experts to create training data and find manual labeling errors powered by weak supervision, active transfer learning, and confident learning. We explain the current workflow and system overview and showcase the benefits of our system in an intent classification experiment, where we reduce the labeling error rate of a given dataset by an absolute 4.9% while improving the F\(_1\) score of a baseline classifier by a total of 9.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Snorkel is available under https://github.com/snorkel-team/snorkel.

  2. 2.

    modAL is available under https://github.com/modAL-python/modAL.

  3. 3.

    cleanlab is available under https://github.com/cleanlab/cleanlab.

  4. 4.

    We chose this name to allude that training data is the “core” of modern supervised learning applications, both in research and applied systems.

  5. 5.

    Models are implemented using the embedding store, and standard machine learning libraries such as Scikit-Learn [10].

  6. 6.

    Accessible under https://rapidapi.com/organization/symanto.

  7. 7.

    Information sources are run containerized due to security and scalability.

  8. 8.

    For instance, if the intent is to cancel an order, a system can automatically do so if it can find the order reference number within the given text message.

References

  1. Basile, A., Pérez-Torró, G., Franco-Salvador, M.: Probabilistic ensembles of zero- and few-shot learning models for emotion classification. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pp. 128–137. INCOMA Ltd., September 2021

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  3. Danka, T., Horvath, P.: modAL: a modular active learning framework for Python. https://github.com/modAL-python/modAL, arXiv:1805.00979

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  6. Fu, D.Y., Chen, M.F., Sala, F., Hooper, S.M., Fatahalian, K., Ré, C.: Fast and three-rious: speeding up weak supervision with triplet methods. In: Proceedings of the 37th International Conference on Machine Learning (ICML 2020) (2020)

    Google Scholar 

  7. Halevy, A., Norvig, P., Fernando, N.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24, 8–12 (2009)

    Article  Google Scholar 

  8. Hovy, D., Berg-Kirkpatrick, T., Vaswani, A., Hovy, E.: Learning whom to trust with MACE. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, pp. 1120–1130. Association for Computational Linguistics, June 2013

    Google Scholar 

  9. Northcutt, C., Jiang, L., Chuang, I.: Confident learning: estimating uncertainty in dataset labels. J. Artif. Intell. Res. 70, 1373–1411 (2021)

    Article  MathSciNet  Google Scholar 

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel. Proc. VLDB Endow. 11(3), 269–282 (2017)

    Article  Google Scholar 

  12. Ratner, A., Sa, C.D., Wu, S., Selsam, D., Ré, C.: Data programming: creating large training sets, quickly. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 3574–3582. Curran Associates Inc., Red Hook (2016)

    Google Scholar 

  13. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data - AI integration perspective. IEEE Trans. Knowl. Data Eng. 33(4), 1328–1347 (2021)

    Article  Google Scholar 

  14. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009)

    Google Scholar 

  15. Shi, X., Fan, W., Ren, J.: Actively transfer domain knowledge. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 342–357. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_23

    Chapter  Google Scholar 

  16. Sun, C., Shrivastava, A., Singh, S., Gupta, A.K.: Revisiting unreasonable effectiveness of data in deep learning era. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  18. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hötter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hötter, J., Wenck, H., Feuerpfeil, M., Witzke, S. (2022). Kern: A Labeling Environment for Large-Scale, High-Quality Training Data. In: Rosso, P., Basile, V., Martínez, R., Métais, E., Meziane, F. (eds) Natural Language Processing and Information Systems. NLDB 2022. Lecture Notes in Computer Science, vol 13286. Springer, Cham. https://doi.org/10.1007/978-3-031-08473-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08473-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08472-0

  • Online ISBN: 978-3-031-08473-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics