Skip to main content

Dragonfly Algorithm for Multi-target Search Problem in Swarm Robotic with Dynamic Environment Size

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence (IEA/AIE 2022)

Abstract

Target search elements are very important in real-world applications such as post-disaster search and rescue missions, and pollution detection. In such situations, there will be time limitations, especially under a dynamic environment size which makes multi-target search problems are more demanding and need a special approach and intention. To answer this need, a proposed multi-target search strategy, based on Dragonfly Algorithm (DA) has been presented in this paper for a Swarm Robotic application. The proposed strategy utilized the DA static swarm (food hunting process) and dynamic swarm (migration process) to achieve the optimized balance between the exploration and exploitation phases during the multi-target search process. For performance evaluation, numerical simulations have been done and the initial results of the proposed strategy show more stability and efficiency than the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_1

    Chapter  Google Scholar 

  2. Doctor, S., Venayagamoorthy, G.K., Gudise, V.G.: Optimal PSO for collective robotic search applications. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), pp. 1390–1395. IEEE (2004). https://doi.org/10.1109/CEC.2004.1331059

  3. Ismail, Z.H., Hamami, M.G.M.: Systematic literature review of swarm robotics strategies applied to target search problem with environment constraints. Appl. Sci. 11, 2383 (2021). https://doi.org/10.3390/app11052383

  4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, pp. 500–505. Institute of Electrical and Electronics Engineers (1986). https://doi.org/10.1109/ROBOT.1985.1087247

  5. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2015). https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  6. Quenzel, J., et al.: Autonomous fire fighting with a UAV-UGV team at MBZIRC 2020. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 934–941. IEEE (2021). https://doi.org/10.1109/ICUAS51884.2021.9476846

  7. Houacine, N.A., Drias, H.: When robots contribute to eradicate the COVID-19 spread in a context of containment. Prog. Artif. Intell. 10(4), 391–416 (2021). https://doi.org/10.1007/s13748-021-00245-3

    Article  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968

  9. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 332–339. IEEE (2007). https://doi.org/10.1109/SIS.2007.367956

  10. Couceiro, M.S., Figueiredo, C.M., Rocha, R.P., Ferreira, N.M.F.: Darwinian swarm exploration under communication constraints: Initial deployment and fault-tolerance assessment. Rob. Auton. Syst. 62, 528–544 (2014). https://doi.org/10.1016/j.robot.2013.12.009

    Article  Google Scholar 

  11. Dadgar, M., Couceiro, M.S., Hamzeh, A.: RbRDPSO: repulsion-based RDPSO for robotic target searching. Iran. J. Sci. Technol. Trans. Electr. Eng. 44(1), 551–563 (2019). https://doi.org/10.1007/s40998-019-00245-z

    Article  Google Scholar 

  12. Yang, J., Xiong, R., Xiang, X., Shi, Y.: Exploration enhanced RPSO for collaborative multitarget searching of robotic swarms. Complexity 2020, 1–12 (2020). https://doi.org/10.1155/2020/8863526

    Article  Google Scholar 

  13. Tang, Q., Yu, F., Xu, Z., Eberhard, P.: Swarm robots search for multiple targets. IEEE Access 8, 1 (2020). https://doi.org/10.1109/ACCESS.2020.2994151

    Article  Google Scholar 

  14. Abuomar, L., Al-Aubidy, K.: Cooperative search and rescue with swarm of robots using binary dragonfly algorithm. In: 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 653–659. IEEE (2018). https://doi.org/10.1109/SSD.2018.8570410

  15. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), pp. 84–88. IEEE (2000). https://doi.org/10.1109/CEC.2000.870279

  16. Raoufi, M., Hamann, H., Romanczuk, P.: Speed-vs-accuracy tradeoff in collective estimation: an adaptive exploration-exploitation case. In: 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 47–55. IEEE (2021). https://doi.org/10.1109/MRS50823.2021.9620695

  17. Hamann, H.: Introduction to swarm robotics. In: Hamann, H. (ed.) Swarm Robotics: A Formal Approach, pp. 1–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2_1

    Chapter  Google Scholar 

  18. Kwa, H.L., Kit, J.L., Bouffanais, R.: Optimal swarm strategy for dynamic target search and tracking. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 672–680 (2020). https://dl.acm.org/doi/abs/10.5555/3398761.3398842

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ghazali Mohd Hamami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamami, M.G.M., Ismail, Z.H. (2022). Dragonfly Algorithm for Multi-target Search Problem in Swarm Robotic with Dynamic Environment Size. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE 2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.1007/978-3-031-08530-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08530-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08529-1

  • Online ISBN: 978-3-031-08530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics