Skip to main content

Abstract

To reduce the pollution and noise in the cities, the authorities encourage intermodality, notably through private cars and public transport combinations. The application of dissuasive measures such as urban tolls is an increasingly investigated solution. This paper proposes an agent-based simulation to assess the impact of an urban toll on intermodal trip behaviors (private car + public transport) in a city. The impact of the urban toll is modeled through a multinomial logit (MNL) model, which is used to estimate the modal choice for each agent. To avoid paying the toll tax, people (agents in our simulation) prefer to combine different modes of transportation, e.g., their private cars and public transport, by parking their vehicles in the park and ride facilities at the entrance to the city. Our experiments based on the MATSim platform infer that with 20 euros of toll tax, it is possible to reduce by \(20\%\) the use of the private car in the European Metropolis of Lille (MEL, France).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source: https://www.insee.fr/fr/statistiques/3698339#consulter.

  2. 2.

    Source: https://www.data.gouv.fr/fr/datasets/taux-de-motorisation-des-menages/.

  3. 3.

    https://opendata.lillemetropole.fr/explore/dataset/enquete-deplacement-2016/information /?location=10,50.65641,3.03338 &basemap=jawg.streets.

References

  1. Balmer, M.: Travel demand modeling for multi-agent transport simulations: algorithms and systems. Ph.D. thesis, ETH Zurich (2007)

    Google Scholar 

  2. Bazzan, A.L., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29(3), 375–403 (2014)

    Article  Google Scholar 

  3. Ben-Akiva, M.E., Lerman, S.R., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand, vol. 9. MIT Press, Cambridge (1985)

    Google Scholar 

  4. Cervero, R.: Traffic impacts of variable pricing on the san Francisco-Oakland bay bridge, California. Transp. Res. Rec. 2278(1), 145–152 (2012)

    Article  Google Scholar 

  5. Chapuis, K., Taillandier, P.: A brief review of synthetic population generation practices in agent-based social simulation. In: submitted to SSC2019, Social Simulation Conference (2019)

    Google Scholar 

  6. Dacko, S., Spalteholz, C.: Upgrading the city: enabling intermodal travel behaviour. Technol. Forecast. Soc. Chang. 89, 222–235 (2014)

    Article  Google Scholar 

  7. Diallo, A.O., Doniec, A., Lozenguez, G., Mandiau, R.: Agent-based simulation from anonymized data: an application to Lille metropolis. In: Proceedings of the 12th International Conference on Ambient Systems, Networks and Technologies (ANT) (2021)

    Google Scholar 

  8. Diallo, A.O., Lozenguez, G., Doniec, A., Mandiau, R.: Comparative evaluation of road traffic simulators based on modeler’s specifications: an application to intermodal mobility behaviors. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 265–272 (2021)

    Google Scholar 

  9. Dor, G.B., Ben-Elia, E., Benenson, I.: Population downscaling in multi-agent transportation simulations: a review and case study. Simul. Model. Pract. Theory, 102233 (2020)

    Google Scholar 

  10. de Freitas, L.M., Schuemperlin, O., Balac, M.: Road pricing: an analysis of equity effects with MATSim. In: Proceedings of the 16th Swiss Transport Research Conference, Ascona, Switzerland, pp. 18–20 (2016)

    Google Scholar 

  11. Hörl, S., Balać, M., Axhausen, K.W.: Pairing discrete mode choice models and agent-based transport simulation with MATSim. In: TRB Annual Meeting. Transportation Research Board (2019)

    Google Scholar 

  12. Horni, A., Nagel, K., Axhausen, K. (eds.): Multi-Agent Transport Simulation MATSim. Ubiquity Press, London (2016). https://doi.org/10.5334/baw

  13. Jones, W.B., Cassady, C.R., Bowden, R.O., Jr.: Developing a standard definition of intermodal transportation. Transp. LJ 27, 345 (2000)

    Google Scholar 

  14. Kickhofer, B., Hosse, D., Turnera, K., Tirachinic, A.: Creating an open MATSim scenario from open data: the case of Santiago de Chile. In: Working Paper 16-02, TU Berlin, Transport System Planning and Transport Telematics (2016)

    Google Scholar 

  15. Kilani, M., Proost, S., Van der Loo, S.: Road pricing and public transport pricing reform in Paris: complements or substitutes? Econ. Transp. 3(2), 175–187 (2014)

    Article  Google Scholar 

  16. Krajzewicz, D., Heinrichs, M., Beige, S.: Embedding intermodal mobility behavior in an agent-based demand model. Procedia Comput. Sci. 130, 865–871 (2018)

    Article  Google Scholar 

  17. McNally, M.G.: The four step model. Handb. Transp. Model. 1, 35–41 (2000)

    Article  Google Scholar 

  18. Miller, E.J., Roorda, M.J.: Prototype model of household activity-travel scheduling. Transp. Res. Rec. 1831(1), 114–121 (2003)

    Article  Google Scholar 

  19. Nagel, K.: Road pricing. In: Horni, A., Nagel, K., Axhausen, K. (eds.) The Multi-Agent Transport Simulation MATSim, Chap. 15, pp. 97–102. Ubiquity Press, London (2016)

    Google Scholar 

  20. Oostendorp, R., Gebhardt, L.: Combining means of transport as a users’ strategy to optimize traveling in an urban context: empirical results on intermodal travel behavior from a survey in berlin. J. Transp. Geogr. 71, 72–83 (2018)

    Article  Google Scholar 

  21. Pursula, M.: Simulation of traffic systems - an overview. J. Geogr. Inf. Decis. Anal. 3(1), 1–8 (1999)

    Google Scholar 

  22. Train, K.E.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lozenguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diallo, A.O., Lozenguez, G., Doniec, A., Mandiau, R. (2022). Agent-Based Intermodal Behavior for Urban Toll. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE 2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.1007/978-3-031-08530-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08530-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08529-1

  • Online ISBN: 978-3-031-08530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics