Abstract
This paper presents a dynamic modelling approach to aid the selection process of actuation components during the design of wearable robots. As a case study, an application of the model to the preliminary design of a fully active ankle prosthesis is presented.
A. Mazzarini and I. Fagioli—Share authorship.
E. Gruppioni, S. Crea and N. Vitiello—Share the senior authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grimmer, M.: Powered Lower Limb Prostheses, p. 168 (2015)
Baldoni, A., Cempini, M., Cortese, M., Crea, S., Carrozza, M.C., Vitiello, N.: Design and validation of a miniaturized SEA transmission system. Mechatronics 49, 149–156 (2018). https://doi.org/10.1016/j.mechatronics.2017.12.003
Giovacchini, F., et al.: A light-weight active orthosis for hip movement assistance. Rob. Auton. Syst. 73, 123–134 (2015). https://doi.org/10.1016/j.robot.2014.08.015
Lanotte, F., et al.: Design and characterization of a multi-joint underactuated low-back exoskeleton for lifting tasks. In: Proceedings of the IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2020, pp. 1146–1151, November (2020). https://doi.org/10.1109/BioRob49111.2020.9224370
Malzahn, J., Roozing, W., Tsagarakis, N.: The compliant joint toolbox for MATLAB: an introduction with examples. IEEE Robot. Autom. Mag. 26(3), 52–63 (2019). https://doi.org/10.1109/MRA.2019.2896360
Calanca, A., et al.: Actuation selection for assistive exoskeletons: matching capabilities to task requirements. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 2053–2062 (2020). https://doi.org/10.1109/TNSRE.2020.3010829
Au, S.K., Weber, J., Herr, H.: Biomechanical design of a powered ankle-foot prosthesis. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 298–303 (2007). https://doi.org/10.1109/ICORR.2007.4428441
Au, S., Berniker, M., Herr, H.: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21(4), 654–666 (2008). https://doi.org/10.1016/j.neunet.2008.03.006
Ferris, A.E., Aldridge, J.M., Rábago, C.A., Wilken, J.M.: Evaluation of a powered ankle-foot prosthetic system during walking. Arch. Phys. Med. Rehabil. 93(11), 1911–1918 (2012). https://doi.org/10.1016/j.apmr.2012.06.009
Pratt, G.A., Williamson, M.M.: Series elastic actuators.pdf. In: Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, pp. 399–406 (1995)
Trigili, E., et al.: Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 24(4), 1485–1496 (2020). https://doi.org/10.1109/TMECH.2019.2907465
Voloshina, A.S., Collins, S.H.: A Review of Design and Control Approaches in Lower-Limb Prosthetic Devices, pp. 1–21 (2019)
Verstraten, T., Furnemont, R., Mathijssen, G., Vanderborght, B., Lefeber, D.: Energy consumption of geared DC motors in dynamic applications: comparing modeling approaches. IEEE Robot. Autom. Lett. 1(1), 524–530 (2016). https://doi.org/10.1109/LRA.2016.2517820
Bovi, G., Rabuffetti, M., Mazzoleni, P., Ferrarin, M.: A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1), 6–13 (2011). https://doi.org/10.1016/j.gaitpost.2010.08.009
Isakov, E., Keren, O., Benjuya, N.: Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthet. Orthot. Int. 24(3), 216–220 (2000). https://doi.org/10.1080/03093640008726550
Lawson, B.E., Mitchell, J., Truex, D., Shultz, A., Ledoux, E., Goldfarb, M.: A robotic leg prosthesis: design, control, and implementation. IEEE Robot. Autom. Mag. 21(4), 70–81 (2014). https://doi.org/10.1109/MRA.2014.2360303
Papadopoulos, E.G., Chasparis, G.C.: Analysis and model-based control of servomechanisms with friction. J. Dyn. Syst. Meas. Control Trans. ASME 126(4), 911–915 (2004). https://doi.org/10.1115/1.1849245
Liu, J., et al.: Optimization and comparison of typical elastic actuators in powered ankle-foot prosthesis. Int. J. Control Autom. Syst. 20(1), 232–242 (2022)
Klute, G.K., Berge, J.S., Orendurff, M.S., Williams, R.M., Czerniecki, J.M.: Prosthetic intervention effects on activity of lower-extremity amputees. Arch. Phys. Med. Rehabil. 87(5), 717–722 (2006). https://doi.org/10.1016/j.apmr.2006.02.007
Acknowledgements
This study was supported by the projects PPR-AI 1-2 MOTU and PR19-PAI-P2 MOTU++, both promoted by INAIL (Centro Protesi, Budrio, Italy).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Mazzarini, A. et al. (2022). A Model-Based Framework for the Selection of Mechatronic Components of Wearable Robots: Preliminary Design of an Active Ankle-Foot Prosthesis. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds) Computers Helping People with Special Needs. ICCHP-AAATE 2022. Lecture Notes in Computer Science, vol 13342. Springer, Cham. https://doi.org/10.1007/978-3-031-08645-8_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-08645-8_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08644-1
Online ISBN: 978-3-031-08645-8
eBook Packages: Computer ScienceComputer Science (R0)