Skip to main content

A Model-Based Framework for the Selection of Mechatronic Components of Wearable Robots: Preliminary Design of an Active Ankle-Foot Prosthesis

  • Conference paper
  • First Online:
Computers Helping People with Special Needs (ICCHP-AAATE 2022)

Abstract

This paper presents a dynamic modelling approach to aid the selection process of actuation components during the design of wearable robots. As a case study, an application of the model to the preliminary design of a fully active ankle prosthesis is presented.

A. Mazzarini and I. Fagioli—Share authorship.

E. Gruppioni, S. Crea and N. Vitiello—Share the senior authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grimmer, M.: Powered Lower Limb Prostheses, p. 168 (2015)

    Google Scholar 

  2. Baldoni, A., Cempini, M., Cortese, M., Crea, S., Carrozza, M.C., Vitiello, N.: Design and validation of a miniaturized SEA transmission system. Mechatronics 49, 149–156 (2018). https://doi.org/10.1016/j.mechatronics.2017.12.003

    Article  Google Scholar 

  3. Giovacchini, F., et al.: A light-weight active orthosis for hip movement assistance. Rob. Auton. Syst. 73, 123–134 (2015). https://doi.org/10.1016/j.robot.2014.08.015

    Article  Google Scholar 

  4. Lanotte, F., et al.: Design and characterization of a multi-joint underactuated low-back exoskeleton for lifting tasks. In: Proceedings of the IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2020, pp. 1146–1151, November (2020). https://doi.org/10.1109/BioRob49111.2020.9224370

  5. Malzahn, J., Roozing, W., Tsagarakis, N.: The compliant joint toolbox for MATLAB: an introduction with examples. IEEE Robot. Autom. Mag. 26(3), 52–63 (2019). https://doi.org/10.1109/MRA.2019.2896360

    Article  Google Scholar 

  6. Calanca, A., et al.: Actuation selection for assistive exoskeletons: matching capabilities to task requirements. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 2053–2062 (2020). https://doi.org/10.1109/TNSRE.2020.3010829

    Article  Google Scholar 

  7. Au, S.K., Weber, J., Herr, H.: Biomechanical design of a powered ankle-foot prosthesis. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 298–303 (2007). https://doi.org/10.1109/ICORR.2007.4428441

  8. Au, S., Berniker, M., Herr, H.: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21(4), 654–666 (2008). https://doi.org/10.1016/j.neunet.2008.03.006

    Article  Google Scholar 

  9. Ferris, A.E., Aldridge, J.M., Rábago, C.A., Wilken, J.M.: Evaluation of a powered ankle-foot prosthetic system during walking. Arch. Phys. Med. Rehabil. 93(11), 1911–1918 (2012). https://doi.org/10.1016/j.apmr.2012.06.009

    Article  Google Scholar 

  10. Pratt, G.A., Williamson, M.M.: Series elastic actuators.pdf. In: Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, pp. 399–406 (1995)

    Google Scholar 

  11. Trigili, E., et al.: Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 24(4), 1485–1496 (2020). https://doi.org/10.1109/TMECH.2019.2907465

    Article  Google Scholar 

  12. Voloshina, A.S., Collins, S.H.: A Review of Design and Control Approaches in Lower-Limb Prosthetic Devices, pp. 1–21 (2019)

    Google Scholar 

  13. Verstraten, T., Furnemont, R., Mathijssen, G., Vanderborght, B., Lefeber, D.: Energy consumption of geared DC motors in dynamic applications: comparing modeling approaches. IEEE Robot. Autom. Lett. 1(1), 524–530 (2016). https://doi.org/10.1109/LRA.2016.2517820

    Article  Google Scholar 

  14. Bovi, G., Rabuffetti, M., Mazzoleni, P., Ferrarin, M.: A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1), 6–13 (2011). https://doi.org/10.1016/j.gaitpost.2010.08.009

    Article  Google Scholar 

  15. Isakov, E., Keren, O., Benjuya, N.: Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthet. Orthot. Int. 24(3), 216–220 (2000). https://doi.org/10.1080/03093640008726550

    Article  Google Scholar 

  16. Lawson, B.E., Mitchell, J., Truex, D., Shultz, A., Ledoux, E., Goldfarb, M.: A robotic leg prosthesis: design, control, and implementation. IEEE Robot. Autom. Mag. 21(4), 70–81 (2014). https://doi.org/10.1109/MRA.2014.2360303

    Article  Google Scholar 

  17. Papadopoulos, E.G., Chasparis, G.C.: Analysis and model-based control of servomechanisms with friction. J. Dyn. Syst. Meas. Control Trans. ASME 126(4), 911–915 (2004). https://doi.org/10.1115/1.1849245

    Article  Google Scholar 

  18. Liu, J., et al.: Optimization and comparison of typical elastic actuators in powered ankle-foot prosthesis. Int. J. Control Autom. Syst. 20(1), 232–242 (2022)

    Article  Google Scholar 

  19. Klute, G.K., Berge, J.S., Orendurff, M.S., Williams, R.M., Czerniecki, J.M.: Prosthetic intervention effects on activity of lower-extremity amputees. Arch. Phys. Med. Rehabil. 87(5), 717–722 (2006). https://doi.org/10.1016/j.apmr.2006.02.007

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the projects PPR-AI 1-2 MOTU and PR19-PAI-P2 MOTU++, both promoted by INAIL (Centro Protesi, Budrio, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Mazzarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzarini, A. et al. (2022). A Model-Based Framework for the Selection of Mechatronic Components of Wearable Robots: Preliminary Design of an Active Ankle-Foot Prosthesis. In: Miesenberger, K., Kouroupetroglou, G., Mavrou, K., Manduchi, R., Covarrubias Rodriguez, M., Penáz, P. (eds) Computers Helping People with Special Needs. ICCHP-AAATE 2022. Lecture Notes in Computer Science, vol 13342. Springer, Cham. https://doi.org/10.1007/978-3-031-08645-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08645-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08644-1

  • Online ISBN: 978-3-031-08645-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics