Skip to main content

Branch-Well-Structured Transition Systems and Extensions

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2022)

Abstract

We propose a relaxation to the definition of a well-structured transition systems (WSTS) while retaining the decidability of boundedness and termination. In this class, we ease the well-quasi-ordered (wqo) condition to be applicable only between states that are reachable one from another. Furthermore, we also relax the monotony condition in the same way. While this retains the decidability of termination and boundedness, it appears that the coverability problem is undecidable. To this end, we define a new notion of monotony, called cover-monotony, which is strictly more general than the usual monotony and still allows to decide a restricted form of the coverability problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000). https://doi.org/10.1006/inco.1999.2843

  2. Blondin, M., Finkel, A., McKenzie, P.: Handling infinitely branching WSTS. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 13–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_2

    Chapter  Google Scholar 

  3. Blondin, M., Finkel, A., McKenzie, P.: Well behaved transition systems. Log. Methods Comput. Sci. 13(3) (2017). https://doi.org/10.23638/LMCS-13(3:24)2017

  4. Bollig, B., Finkel, A., Suresh, A.: Bounded reachability problems are decidable in FIFO machines. In: Konnov, I., Kovács, L. (eds.) 31st International Conference on Concurrency Theory, CONCUR 2020, September 1–4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 49:1–49:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.49

  5. Chadha, R., Viswanathan, M.: Deciding branching time properties for asynchronous programs. Theor. Comput. Sci. 410(42), 4169–4179 (2009). https://doi.org/10.1016/j.tcs.2009.01.021

  6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

    Article  MathSciNet  Google Scholar 

  7. D’Osualdo, E., Stutz, F.: Decidable inductive invariants for verification of cryptographic protocols with unbounded sessions. In: Konnov, I., Kovács, L. (eds.) 31st International Conference on Concurrency Theory, CONCUR 2020, September 1–4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 31:1–31:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.31

  8. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055044

    Chapter  MATH  Google Scholar 

  9. Erdős, P., Rado, R.: A partition calculus in set theory. Bull. Amer. Math. Soc. 62(5), 427–489 (1956)

    Article  MathSciNet  Google Scholar 

  10. Finkel, A.: Reduction and covering of infinite reachability trees. Inf. Comput. 89(2), 144–179 (1990). https://doi.org/10.1016/0890-5401(90)90009-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing petri net extensions. Inf. Comput. 195(1-2), 1–29 (2004). https://doi.org/10.1016/j.ic.2004.01.005, http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FMP-wstsPN-icomp.ps

  12. Finkel, A., Praveen, M.: Verification of flat fifo systems. In: Fokkink, W., van Glabbeek, R. (eds.) Proceedings of the 30th International Conference on Concurrency Theory (CONCUR 2019), Leibniz International Proceedings in Informatics, Leibniz-Zentrum für Informatik, Amsterdam, The Netherlands, August 2019

    Google Scholar 

  13. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1–2), 63–92 (2001). https://doi.org/10.1016/S0304-3975(00)00102-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Higman, G.: Ordering by divisibility in abstract algebras. In: Proceedings of The London Mathematical Society, pp. 326–336 (1952)

    Google Scholar 

  15. Jéron, T., Jard, C.: Testing for unboundedness of fifo channels. Theor. Comput. Sci. 113, 93–117 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work reported was carried out in the framework of ReLaX, UMI2000 (ENS Paris-Saclay, CNRS, Univ. Bordeaux, CMI, IMSc). It is partly supported by ANR FREDDA (ANR-17-CE40-0013) and ANR BRAVAS (ANR-17-CE40-0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Suresh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bollig, B., Finkel, A., Suresh, A. (2022). Branch-Well-Structured Transition Systems and Extensions. In: Mousavi, M.R., Philippou, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2022. Lecture Notes in Computer Science, vol 13273. Springer, Cham. https://doi.org/10.1007/978-3-031-08679-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08679-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08678-6

  • Online ISBN: 978-3-031-08679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics