Abstract
Monitoring the correctness of distributed cyber-physical systems is essential. We address the analysis of the log of a black-box cyber-physical system. Detecting possible safety violations can be hard when some samples are uncertain or missing. In this work, the log is made of values known with some uncertainty; in addition, we make use of an over-approximated yet expressive model, given by a non-linear extension of dynamical systems. Given an offline log, our approach is able to monitor the log against safety specifications with a limited number of false alarms. As a second contribution, we show that our approach can be used online to minimize the number of sample triggers, with the aim at energetic efficiency. We apply our approach to two benchmarks, an anesthesia model and an adaptive cruise controller.
This work is partially supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015), and the National Science Foundation (NSF) of the United States of America under grant number 2038960.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Althoff, M.: An introduction to CORA 2015. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 34, pp. 120–151. EasyChair (2015). https://doi.org/10.29007/zbkv
Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: HSCC, pp. 93–102. ACM (2011). https://doi.org/10.1145/1967701.1967717
André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty. In: ICECCS, pp. 10–20. IEEE Computer Society (2018). https://doi.org/10.1109/ICECCS2018.2018.00010
Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_13
Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5
Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: RV-CuBES. Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017)
Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid systems. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 183–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_10
Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18
Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: RTSS, pp. 13–24. IEEE Computer Society (2016). https://doi.org/10.1109/RTSS.2016.011
Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for non-linear continuous systems. In: FMCAD, pp. 59–66. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987596
Combastel, C., Raka, S.A.: On computing envelopes for discrete-time linear systems with affine parametric uncertainties and bounded inputs. IFAC Proc. Volumes 44(1), 4525–4533 (2011). https://doi.org/10.3182/20110828-6-IT-1002.02585
Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_4
Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19
Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5
Gan, V., Dumont, G.A., Mitchell, I.: Benchmark problem: a PK/PD model and safety constraints for anesthesia delivery. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 34, pp. 1–8. EasyChair (2014). https://doi.org/10.29007/8drm
Ghosh, B., Duggirala, P.S.: Robust reachable set: accounting for uncertainties in linear dynamical systems. ACM Trans. Embed. Comput. Syst. 18(5s), 97:1–97:22 (2019). https://doi.org/10.1145/3358229
Ghosh, B., Duggirala, P.S.: Reachability of linear uncertain systems: sampling based approaches. Technical Report 2109.07638, arXiv (2021). https://arxiv.org/abs/2109.07638
Ghosh, B., Duggirala, P.S.: Robustness of safety for linear dynamical systems: symbolic and numerical approaches. Technical Report 2109.07632, arXiv (2021). https://arxiv.org/abs/2109.07632
Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58485-4_43
Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative monitoring of STL with edit distance. Formal Methods Syst. Des. 53(1), 83–112 (2018). https://doi.org/10.1007/s10703-018-0319-x
Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15
Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized linear systems. In: EMSOFT, pp. 237–246. IEEE (2015). https://doi.org/10.1109/EMSOFT.2015.7318279
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12
Mamouras, K., Chattopadhyay, A., Wang, Z.: A compositional framework for quantitative online monitoring over continuous-time signals. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 142–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_8
Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-physical system models. FMSD 49(1-2), 33–74 (2016). https://doi.org/10.1007/s10703-016-0241-z
Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid systems. Technical Report (2018). http://arxiv.org/abs/1811.06502
Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches. IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016). https://doi.org/10.1109/TCST.2015.2501351
Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.64
Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 178–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_11
Testylier, R., Dang, T.: NLTOOLBOX: a library for reachability computation of nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 469–473. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_37
Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_16
Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pattern matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_8
Waga, M., André, É.: Online parametric timed pattern matching with automata-based skipping. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 371–389. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_26
Waga, M., André, É., Hasuo, I.: Model-bounded monitoring of hybrid systems. ACM Trans. Cyber-Phys. Syst. (2022). https://doi.org/10.1145/3529095
Waga, M., André, É., Hasuo, I.: Parametric timed pattern matching. ACM Trans. Softw. Eng. Methodol. (2022). https://doi.org/10.1145/3517194
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Ghosh, B., André, É. (2022). Offline and Online Monitoring of Scattered Uncertain Logs Using Uncertain Linear Dynamical Systems. In: Mousavi, M.R., Philippou, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2022. Lecture Notes in Computer Science, vol 13273. Springer, Cham. https://doi.org/10.1007/978-3-031-08679-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-08679-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08678-6
Online ISBN: 978-3-031-08679-3
eBook Packages: Computer ScienceComputer Science (R0)