Skip to main content

Computational Complexity of Classical Solutions of Partial Differential Equations

  • Conference paper
  • First Online:
Revolutions and Revelations in Computability (CiE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13359))

Included in the following conference series:

Abstract

This paper provides a brief survey of recent achievements in characterizing computational complexity of partial differential equations (PDEs), as well as computing solutions with guaranteed precision within the exact real computation approach. The emphasis is on classical solutions and linear PDE systems, since these are the cases where most of the progress has been achieved so far. Complexity, as it turns out, heavily depends on the smoothness of the initial data, which has similarities with the situation for ordinary differential equations (ODEs).

Supported by the National Research Foundation of Korea (grant 2017R1E1A1A03071032) and by the International Research & Development Program of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702) and by the NRF Brain Pool program (grant 2019H1D3A2A02102240) and by the RFBR-JSPS Grant 20-51-50001. The author is thankful to Victor Selivanov, Holger Thies and Martin Ziegler for valuable discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_18

    Chapter  Google Scholar 

  2. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What Is Computable, pp. 425–491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18

    Chapter  MATH  Google Scholar 

  3. Braverman, M., Cook, S.A.: Computing over the reals: foundations for scientific computing. Notices AMS 53(3), 318–329 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Ershov, Y., Goncharov, S.: Constructive Models. Novosibirsk, Scientific Book (in Russian, there is an English Translation) (1999)

    Google Scholar 

  5. Gay, W., Zhang, B.Y., Zhong, N.: Computability of solutions of the Korteweg-de Vries equation. Math. Log. Q. 47(1), 93–110 (2001)

    Article  MathSciNet  Google Scholar 

  6. Graça, D., Zhong, N.: Computability of differential equations. In: Handbook of Computability and Complexity in Analysis (Editors: Vasco Brattka and Peter Hertling), pp. 71–99. Theory and Applications of Computability (2021)

    Google Scholar 

  7. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Comput. Complex. 19(2), 305–332 (2010). https://doi.org/10.1007/s00037-010-0286-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 495–502. ACM, New York (2010). https://doi.org/10.1145/1806689.1806758

  9. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Log. Methods Comput. Sci. 10(1:6), 15 (2014). https://doi.org/10.2168/LMCS-10(1:6)2014

  10. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on multidimensional analytic functions and ODE solving. In: Proc 25th International Workshop on Logic, Language, Information, and Computation (WOLLIC), pp. 223–236 (2018). https://doi.org/10.1007/978-3-662-57669-4_13

  11. Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of the Dirichlet problem for Poisson’s equation. Math. Struct. Comput. Sci. 27(8), 1437–1465 (2017). https://doi.org/10.1017/S096012951600013X

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawamura, A., Thies, H., Ziegler, M.: Average-case polynomial-time computability of hamiltonian dynamics. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, 27–31 August 2018, Liverpool, UK. LIPIcs, vol. 117, pp. 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  13. Kawamura, A., Ziegler, M.: Invitation to real complexity theory: algorithmic foundations to reliable numerics with bit-costs (2018). https://arxiv.org/abs/1801.07108

  14. Ko, K., Friedman, H.: Computational complexity of real functions. Theoret. Comput. Sci. 20(3), 323–352 (1982). https://doi.org/10.1016/S0304-3975(82)80003-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science, Birkhäuser, Boston (1991)

    Google Scholar 

  16. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving systems of linear evolutionary partial differential equations. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_13

    Chapter  Google Scholar 

  17. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of classical solutions of linear evolutionary systems of partial differential equations. J. Complex. (2022, submitted)

    Google Scholar 

  18. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering and improved solving linear differential equations. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_19

    Chapter  MATH  Google Scholar 

  19. Lim, D., Selivanova, S., Ziegler, M.: Complexity and coding theory of hilbert spaces: what is a polynomial-time computable \(l_2\) function? In: Proceedings of Computability and Complexity in Analysis (CCA 2020), pp. 41–42 (2020)

    Google Scholar 

  20. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14

    Chapter  Google Scholar 

  21. Pan, V., Reif, J.: The bit-complexity of discrete solutions of partial differential equations: compact multigrid. Comput. Math. Appl. 20, 9–16 (1990)

    Article  MathSciNet  Google Scholar 

  22. Park, S., et al.: Foundation of computer (algebra) analysis systems: semantics, logic, programming, verification (2020). https://arxiv.org/abs/1608.05787

  23. Plum, M.: Computer-assisted proofs for semilinear elliptic boundary value problems. Japan J. Indust. Appl. Math. 26(2–3), 419–442 (2009)

    Article  MathSciNet  Google Scholar 

  24. Pouly, A., Graça, D.S.: Computational complexity of solving polynomial differential equations over unbounded domains. Theoret. Comput. Sci. 626, 67–82 (2016). https://doi.org/10.1016/j.tcs.2016.02.002

    Article  MathSciNet  MATH  Google Scholar 

  25. Pour-El, M., Richards, J.: Computability in Analysis and Physics. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  26. Selivanova, S., Selivanov, V.: Computing solution operators of boundary-value problems for some linear hyperbolic systems of PDEs. Log. Methods Comput. Sci. 13(4:13), 1–31 (2017)

    Google Scholar 

  27. Selivanov, V., Selivanova, S.: Primitive recursive ordered fields and some applications. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 353–369. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1_20

    Chapter  Google Scholar 

  28. Selivanova, S., Selivanov, V.: Primitive recursive ordered fields and some applications (2021). arXiv:2010.10189

  29. Selivanova, S., Steinberg, F., Thies, H., Ziegler, M.: Exact real computation of solution operators for linear analytic systems of partial differential equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 370–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1_21

    Chapter  Google Scholar 

  30. Selivanova, S., Selivanov, V.: Bit complexity of computing solutions for symmetric hyperbolic systems of PDEs with guaranteed precision. Computability 10(2), 123–140 (2021). https://doi.org/10.3233/COM-180215

    Article  MathSciNet  MATH  Google Scholar 

  31. Selivanova, S., Selivanov, V.L.: Computing solution operators of boundary-value problems for some linear hyperbolic systems of PDEs. Log. Methods Comput. Sci. 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:13)2017

  32. Steinberg, F.: Complexity theory for spaces of integrable functions. Log. Methods Comput. Sci. 13(3), Paper No. 21, 39 (2017). https://doi.org/10.23638/LMCS-13(3:21)2017

  33. Sun, S.-M., Zhong, N., Ziegler, M.: Computability of the solutions to navier-stokes equations via effective approximation. In: Du, D.-Z., Wang, J. (eds.) Complexity and Approximation. LNCS, vol. 12000, pp. 80–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41672-0_7

    Chapter  MATH  Google Scholar 

  34. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  35. Weihrauch, K.: Computational complexity on computable metric spaces. Math. Log. Q. 49(1), 3–21 (2003)

    Article  MathSciNet  Google Scholar 

  36. Ziegler, M., Brattka, V.: Computability in linear algebra. Theoret. Comput. Sci. 326(1–3), 187–211 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Selivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selivanova, S. (2022). Computational Complexity of Classical Solutions of Partial Differential Equations. In: Berger, U., Franklin, J.N.Y., Manea, F., Pauly, A. (eds) Revolutions and Revelations in Computability. CiE 2022. Lecture Notes in Computer Science, vol 13359. Springer, Cham. https://doi.org/10.1007/978-3-031-08740-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08740-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08739-4

  • Online ISBN: 978-3-031-08740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics