Skip to main content

Numerical Approximation of the One-Way Helmholtz Equation Using the Differential Evolution Method

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

  • 1107 Accesses

Abstract

This paper is devoted to increasing the computational efficiency of the finite-difference methods for solving the one-way Helmholtz equation in unbounded domains. The higher-order rational approximation of the propagation operator was taken as a basis. Computation of appropriate approximation coefficients and grid sizes is formulated as the problem of minimizing the discrete dispersion relation error. Keeping in mind the complexity of the developed optimization problem, the differential evolution method was used to tackle it. The proposed method does not require manual selection of the artificial parameters of the numerical scheme. The stability of the scheme is provided by an additional constraint of the optimization problem. A comparison with the Padé approximation method and rational interpolation is carried out. The effectiveness of the proposed approach is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scipy (2022). https://scipy.org/

  2. Baker, G.A., Graves-Morris, P.: Pade Approximants, vol. 59. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Bekker, E.V., Sewell, P., Benson, T.M., Vukovic, A.: Wide-angle alternating-direction implicit finite-difference beam propagation method. J. Light. Technol. 27(14), 2595–2604 (2009)

    Article  Google Scholar 

  4. Collins, M.D.: A split-step Pade solution for the parabolic equation method. J. Acoust. Soc. Am. 93(4), 1736–1742 (1993)

    Article  Google Scholar 

  5. Collins, M.D., Siegmann, W.L.: Parabolic Wave Equations with Applications. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9934-7

    Book  MATH  Google Scholar 

  6. van Dijk, W.: Efficient explicit numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 105(2), 025303 (2022)

    Article  Google Scholar 

  7. Ehrhardt, M., Zisowsky, A.: Discrete non-local boundary conditions for split-step Padé approximations of the one-way Helmholtz equation. J. Comput. Appl. Math. 200(2), 471–490 (2007)

    Article  MathSciNet  Google Scholar 

  8. Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

  9. Fishman, L., McCoy, J.J.: Derivation and application of extended parabolic wave theories. I. The factorized Helmholtz equation. J. Math. Phys. 25(2), 285–296 (1984)

    Google Scholar 

  10. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)

    Article  Google Scholar 

  11. Lampinen, J.: A constraint handling approach for the differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No. 02TH8600), vol. 2, pp. 1468–1473. IEEE (2002)

    Google Scholar 

  12. Levy, M.F.: Parabolic Equation Methods for Electromagnetic Wave Propagation. The Institution of Electrical Engineers, UK (2000)

    Google Scholar 

  13. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021)

    Article  MathSciNet  Google Scholar 

  14. Lytaev, M.S.: Automated selection of the computational parameters for the higher-order parabolic equation numerical methods. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 296–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_22

    Chapter  Google Scholar 

  15. Lytaev, M.S.: Chebyshev-type rational approximations of the one-way Helmholtz equation for solving a class of wave propagation problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12742, pp. 422–435. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77961-0_35

    Chapter  Google Scholar 

  16. Lytaev, M.S.: Rational interpolation of the one-way Helmholtz propagator. J. Comput. Sci. 58, 101536 (2022)

    Article  Google Scholar 

  17. Lytaev, M.S.: Nonlocal boundary conditions for split-step Padé approximations of the Helmholtz equation with modified refractive index. IEEE Antennas Wirel. Propag. Lett. 17(8), 1561–1565 (2018)

    Article  Google Scholar 

  18. Petrov, P.S., Ehrhardt, M., Trofimov, M.: On decomposition of the fundamental solution of the Helmholtz equation over solutions of iterative parabolic equations. Asymptot. Anal. 126(3–4), 215–228 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Price, K.V.: Differential evolution. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization. Intelligent Systems Reference Library, vol. 38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30504-7_8

  20. Samarskii, A.A., Mikhailov, A.P.: Principles of Mathematical Modelling: Ideas, Methods, Examples. Taylor and Francis, London (2002)

    Google Scholar 

  21. Schreiber, M., Loft, R.: A parallel time integrator for solving the linearized shallow water equations on the rotating sphere. Numerical Linear Algebra Appl. 26(2), e2220 (2019)

    Article  MathSciNet  Google Scholar 

  22. Zhou, H., Chabory, A., Douvenot, R.: A fast wavelet-to-wavelet propagation method for the simulation of long-range propagation in low troposphere. IEEE Trans. Antennas Propag. 70, 2137–2148 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation grant No. 21-71-00039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Lytaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lytaev, M.S. (2022). Numerical Approximation of the One-Way Helmholtz Equation Using the Differential Evolution Method. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics