Skip to main content

Enhancing Computational Steel Solidification by a Nonlinear Transient Thermal Model

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

  • 1116 Accesses

Abstract

Designing efficient steel solidification methods could contribute to a sustainable future manufacturing. Current computational models, including physics-based and machine learning-based design, have not led to a robust solidification design. Predicting phase-change interface is the crucial step for steel solidification design. In the present work, we propose a simplified model for thermal radiation to be included in the phase-change equations. The proposed model forms a set of nonlinear partial differential equations and it accounts for both thermal radiation and phase change in the design. As numerical solver we implement a fully implicit time integration scheme and a Newton-type algorithm is used to deal with the nonlinear terms. Computational results are presented for two test examples of steel solidification. The findings here could be used to understand effect of thermal radiation in steel solidification. Combining the present approach with physics-based computer modeling can provide a potent tool for steel solidification design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choudhary, S.K., Mazumdar, D.: Mathematical modelling of fluid flow, heat transfer and solidification phenomena in continuous casting of steel. Steel Res. 66(5), 199–205 (1995)

    Article  Google Scholar 

  2. Klimeš, L., Štětina, J.: A rapid GPU-based heat transfer and solidification model for dynamic computer simulations of continuous steel casting. J. Mater. Process. Technol. 226, 1–14 (2015)

    Article  Google Scholar 

  3. Koric, S., Hibbeler, L.C., Thomas, B.G.: Explicit coupled thermo-mechanical finite element model of steel solidification. Int. J. Numer. Meth. Eng. 78(1), 1–31 (2009)

    Article  Google Scholar 

  4. El Haddad, M., Belhamadia, Y., Deteix, J., Yakoubi, D.: A projection scheme for phase change problems with convection. Comput. Math. Appl. 108, 109–122 (2022)

    Article  MathSciNet  Google Scholar 

  5. Belhamadia, Y., Fortin, A., Briffard, T.: A two-dimensional adaptive remeshing method for solving melting and solidification problems with convection. Numer. Heat Transfer Part A Appl. 76(4), 179–197 (2019)

    Article  Google Scholar 

  6. Belhamadia, Y., Kane, A., Fortin, A.: An enhanced mathematical model for phase change problems with natural convection. Int. J. Numer. Anal. Model. 3(2), 192–206 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Koric, S., Thomas, B.G.: Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws. J. Mater. Process. Technol. 197(1), 408–418 (2008)

    Article  Google Scholar 

  8. Roubicek, T.: The Stefan problem in heterogeneous media. Annales de l’Institut Henri Poincaré (C) Non Linear Anal. 6(6), 481–501 (1989)

    Google Scholar 

  9. Seaid, M., Klar, A., Pinnau, R.: Numerical solvers for radiation and conduction in high temperature gas flows. Flow Turbul. Combust. 75(1), 173–190 (2005)

    Article  Google Scholar 

  10. Seaid, M.: Multigrid Newton-Krylov method for radiation in diffusive semitransparent media. J. Comput. Appl. Math. 203(2), 498–515 (2007)

    Article  MathSciNet  Google Scholar 

  11. Rosseland, S.: Theoretical Astrophysics. Atomic Theory and the Analysis of Stellar Atmospheres and Envelopes. Clarendon Press, Oxford (1936)

    Google Scholar 

  12. Larsen, E.W., Thömmes, G., Klar, A., Seaid, M., Götz, T.: Simplified PN approximations to the equations of radiative heat transfer and applications. J. Comput. Phys. 183(2), 652–675 (2002)

    Article  MathSciNet  Google Scholar 

  13. Belhamadia, Y., Fortin, A., Chamberland, É.: Anisotropic mesh adaptation for the solution of the Stefan problem. J. Comput. Phys. 194(1), 233–255 (2004)

    Article  MathSciNet  Google Scholar 

  14. Belhamadia, Y., Fortin, A., Chamberland, É.: Three-dimensional anisotropic mesh adaptation for phase change problems. J. Comput. Phys. 201(2), 753–770 (2004)

    Article  MathSciNet  Google Scholar 

  15. Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. CRC Press Taylor & Francis Group, London (1993)

    Google Scholar 

  16. White, R.E.: A numerical solution of the enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal. 19(6), 1158–1172 (1982)

    Article  MathSciNet  Google Scholar 

  17. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  18. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  MathSciNet  Google Scholar 

  19. Belhamadia, Y.: A time-dependent adaptive remeshing for electrical waves of the heart. IEEE Trans. Biomed. Eng. 55(2), 443–452 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Royal Society under the contract IES-R2-202078 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima-Ezzahrae Moutahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moutahir, FE., Belhamadia, Y., El-Amrani, M., Seaid, M. (2022). Enhancing Computational Steel Solidification by a Nonlinear Transient Thermal Model. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics