Skip to main content

Ultrafast Focus Detection for Automated Microscopy

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

  • 1526 Accesses

Abstract

Technological advancements in modern scientific instruments, such as scanning electron microscopes (SEMs), have significantly increased data acquisition rates and image resolutions enabling new questions to be explored; however, the resulting data volumes and velocities, combined with automated experiments, are quickly overwhelming scientists as there remain crucial steps that require human intervention, for example reviewing image focus. We present a fast out-of-focus detection algorithm for electron microscopy images collected serially and demonstrate that it can be used to provide near-real-time quality control for neuroscience workflows. Our technique, Multi-scale Histologic Feature Detection, adapts classical computer vision techniques and is based on detecting various fine-grained histologic features. We exploit the inherent parallelism in the technique to employ GPU primitives in order to accelerate characterization. We show that our method can detect out-of-focus conditions within just 20 ms. To make these capabilities generally available, we deploy our feature detector as an on-demand service and show that it can be used to determine the degree of focus in approximately 230 ms, enabling near-real-time use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, L.F., et al.: The mind of a mouse. Cell 182(6), 1372–1376 (2020)

    Google Scholar 

  2. Ananthakrishnan, R., et al.: Globus platform services for data publication. In: Practice and Experience on Advanced Research Computing, pp. 14:1–14:7 (2018)

    Google Scholar 

  3. Bian, Z., et al.: Autofocusing technologies for whole slide imaging and automated microscopy. J. Biophoton. 13(12), e202000227 (2020)

    Google Scholar 

  4. Bicer, T., et al.: Real-time data analysis and autonomous steering of synchrotron light source experiments. In: 13th International Conference on e-Science (e-Science), pp. 59–68. IEEE (2017)

    Google Scholar 

  5. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  6. Carl Zeiss AG: ZEISS MultiSEM Research Partner Program (10 2018), the World’s Fastest Scanning Electron Microscopes, October 2018

    Google Scholar 

  7. Chard, R., et al.: funcX: a federated function serving fabric for science. In: Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, pp. 65–76 (2020)

    Google Scholar 

  8. Derpanis, K.G.: The gaussian pyramid (2005)

    Google Scholar 

  9. Duits, R., Florack, L., De Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20(3), 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  10. Herculano-Houzel, S., Watson, C.R., Paxinos, G.: Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front. Neuroanatom. 7 (2013)

    Google Scholar 

  11. Hua, Y., Laserstein, P., Helmstaedter, M.: Large-volume en-bloc staining for electron microscopy-based connectomics. Nat. Commun. 6(1), 1–7 (2015)

    Google Scholar 

  12. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015)

    Google Scholar 

  13. Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)

    Article  MathSciNet  Google Scholar 

  14. von Laszeski, G., et al.: Real-time analysis, visualization, and steering of microtomography experiments at photon sources. Technical report, Argonne National Lab (2000)

    Google Scholar 

  15. Levental, M., et al.: Towards online steering of flame spray pyrolysis nanoparticle synthesis. In: IEEE/ACM 2nd Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP), pp. 35–40. IEEE (2020)

    Google Scholar 

  16. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 79–116 (2004)

    Article  Google Scholar 

  17. Liu, Z., et al.: Bridging data center AI systems with edge computing for actionable information retrieval. In: 3rd Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP), pp. 15–23. IEEE (2021)

    Google Scholar 

  18. Luo, Y., Huang, L., Rivenson, Y., Ozcan, A.: Single-shot autofocusing of microscopy images using deep learning. ACS Photon. 8(2), 625–638 (2021)

    Article  Google Scholar 

  19. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal Soc. London. Ser. B. Biol. Sci. 207(1167), 187–217 (1980)

    Google Scholar 

  20. Merrill, D.: Cuda unbound (cub). https://github.com/NVIDIA/cub (2021)

  21. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition, vol. 3, pp. 850–855. IEEE (2006)

    Google Scholar 

  22. Pan, J., Libera, J.A., Paulson, N.H., Stan, M.: Flame stability analysis of flame spray pyrolysis by artificial intelligence. Int. J. Adv. Manuf. Technol. 2215–2228 (2021). https://doi.org/10.1007/s00170-021-06884-z

  23. Potluri, S., Wang, H., Bureddy, D., Singh, A.K., Rosales, C., Panda, D.K.: Optimizing MPI communication on multi-GPU systems using CUDA inter-process communication. In: 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum, pp. 1848–1857 (2012)

    Google Scholar 

  24. Redondo, R., et al.: Autofocus evaluation for brightfield microscopy pathology. J. Biomed. Opt. 17(3), 1–9 (2012)

    Google Scholar 

  25. Stevanovic, U., et al.: A control system and streaming DAQ platform with image-based trigger for x-ray imaging. IEEE Trans. Nucl. Sci. 62(3), 911–918 (2015)

    Google Scholar 

  26. Wildenberg, G.A., Rosen, M.R., Lundell, J., Paukner, D., Freedman, D.J., Kasthuri, N.: Primate neuronal connections are sparse in cortex as compared to mouse. Cell Rep. 36(11), 109709 (2021)

    Article  Google Scholar 

  27. Yeo, T., Ong, S., Jayasooriah, Sinniah, R.: Autofocusing for tissue microscopy. Image Vis. Comput. 11(10), 629–639 (1993)

    Google Scholar 

  28. Sun, Y., Duthaler, S., Nelson, B.J.: Autofocusing algorithm selection in computer microscopy. In: International Conference on Intelligent Robots and Systems, pp. 70–76 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Levental .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levental, M., Chard, R., Chard, K., Foster, I., Wildenberg, G. (2022). Ultrafast Focus Detection for Automated Microscopy. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics