Skip to main content

Dynamic Classification of Bank Clients by the Predictability of Their Transactional Behavior

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Abstract

We propose a method for dynamic classification of bank clients by the predictability of their transactional behavior (with respect to the chosen prediction model, quality metric, and predictability measure). The method adopts incremental learning to perform client segmentation based on their predictability profiles and can be used by banks not only for determining predictable (and thus profitable, in a sense) clients currently but also for analyzing their dynamics during economical periods of different types. Our experiments show that (1) bank clients can be effectively divided into predictability classes dynamically, (2) the quality of prediction and classification models is significantly higher with the proposed incremental approach than without it, (3) clients have different transactional behavior in terms of predictability before and during the COVID-19 pandemics.

This research is financially supported by the Russian Science Foundation, Agreement 17-71-30029, with co-financing of Bank Saint Petersburg, Russia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/AlgoMathITMO/Dynamic-classifier.

References

  1. Bach, M.P., Jukovic, S., Dumicic, K., Sarlija, N.: Business client segmentation in banking using self-organizing maps. South East Euro. J. Econ. Bus. (Online) 8(2), 32 (2013)

    Article  Google Scholar 

  2. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  3. Carvalho, V.M., et al.: Tracking the covid-19 crisis with high-resolution transaction data. R. Soc. Open Sci. 8(8), 210218 (2020)

    Google Scholar 

  4. Cuadros, A.J., Domínguez, V.E.: Customer segmentation model based on value generation for marketing strategies formulation. Estudios Gerenciales 30(130), 25–30 (2014)

    Article  Google Scholar 

  5. Fadlallah, B., Chen, B., Keil, A., Principe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. 87(2), 022911 (2013)

    Google Scholar 

  6. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

    Google Scholar 

  7. Granger, C., Newbold, P.: Forecasting Economic Time Series. Elsevier (1986)

    Google Scholar 

  8. Guo, J., Zhang, S., Zhu, J., Ni, R.: Measuring the gap between the maximum predictability and prediction accuracy of human mobility. IEEE Access 8, 131859–131869 (2020)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  10. Horvath, A., Kay, B.S., Wix, C.: The covid-19 shock and consumer credit: Evidence from credit card data. Available at SSRN 3613408 (2021)

    Google Scholar 

  11. Järv, P.: Predictability limits in session-based next item recommendation. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 146–150 (2019)

    Google Scholar 

  12. Kaboudan, M.: A measure of time series’ predictability using genetic programming applied to stock returns. J. Forecast. 18(5), 345–357 (1999)

    Google Scholar 

  13. Kovantsev, A., Chunaev, P., Bochenina, K.: Evaluating time series predictability via transition graph analysis. In: 2021 International Conference on Data Mining Workshops (ICDMW), pp. 1039–1046 (2021)

    Google Scholar 

  14. Kovantsev, A., Gladilin, P.: Analysis of multivariate time series predictability based on their features. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 348–355. IEEE (2020)

    Google Scholar 

  15. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Google Scholar 

  16. Moon, G., Hamm, J.: A large-scale study in predictability of daily activities and places. In: MobiCASE, pp. 86–97 (2016)

    Google Scholar 

  17. Panuš, J., Jonášová, H., Kantorová, K., Doležalová, M., Horáčková, K.: Customer segmentation utilization for differentiated approach. In: 2016 International Conference on Information and Digital Technologies (IDT), pp. 227–233. IEEE (2016)

    Google Scholar 

  18. Prelipcean, G., Popoviciu, N., Boscoianu, M.: The role of predictability of financial series in emerging market applications. In: Proceedings of the 9th WSEAS International Conference on Mathematics & Computers in Business and Economics (MCBE’80), pp. 203–208 (2008)

    Google Scholar 

  19. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  20. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sign. Process. 45(11), 2673–2681 (1997)

    Google Scholar 

  21. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. arXiv preprint arXiv:1705.08690 (2017)

  22. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Google Scholar 

  23. Stavinova, E., Bochenina, K.: Forecasting of foreign trips by transactional data: a comparative study. Procedia Comput. Sci. 156, 225–234 (2019)

    Google Scholar 

  24. Stavinova, E., Bochenina, K., Chunaev, P.: Predictability classes for forecasting clients behavior by transactional data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12744, pp. 187–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77967-2_16

  25. Stavinova, E., Evmenova, E., Antonov, A., Chunaev, P.: Link predictability classes in complex networks. In: International Conference on Complex Networks and Their Applications, pp. 376–387. Springer (2021)

    Google Scholar 

  26. Vaganov, Danila, Funkner, Anastasia, Kovalchuk, Sergey, Guleva, Valentina, Bochenina, Klavdiya: Forecasting Purchase Categories with Transition Graphs Using Financial and Social Data. In: Staab, Steffen, Koltsova, Olessia, Ignatov, Dmitry I.. (eds.) SocInfo 2018. LNCS, vol. 11185, pp. 439–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01129-1_27

    Chapter  Google Scholar 

  27. Wong, E., Wei, Y.: Customer online shopping experience data analytics: integrated customer segmentation and customised services prediction model. Int. J. Retail Distrib. Manag. (2018)

    Google Scholar 

  28. Wong, J.Y., Chen, H.J., Chung, P.H., Kao, N.C.: Identifying valuable travelers and their next foreign destination by the application of data mining techniques. Asia Pacific J. Tourism Res. 11(4), 355–373 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Stavinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bezbochina, A., Stavinova, E., Kovantsev, A., Chunaev, P. (2022). Dynamic Classification of Bank Clients by the Predictability of Their Transactional Behavior. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics