Skip to main content

Approximate Function Classification

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Classification of Boolean functions requires specific software or circuits to determine the class of a function or even to distinguish between two different classes. In order to provide a less costly solution, we study the approximation of the NPN function classification by a artificial neural network (ANN), and shown that there are configurations of ANN that can perfectly classify four-bit Boolean functions. Additionally, we look at the possibility of learning the classification of four-bit Boolean functions using a set of three-bit Boolean neural classifiers, and determine the scalability. Finally we also learn a discriminator that can distinguish between two functions and determine their similarity or difference in their NPN classes. As a result we show that the approximate neural function classification is a convenient approach to implement an efficient classifier and class discriminator directly from the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Debnath, D., Sasao, T.: Efficient computation of canonical form under variable permutation and negation for Boolean matching in large libraries. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89–A(12), 3443–3450 (2006)

    Article  Google Scholar 

  2. Edwards, C.R.: The application of the Rademacher-Walsh transform to Boolean function classification and threshold logic synthesis. IEEE Trans. Comput. 100(1), 48–62 (1975)

    Article  MathSciNet  Google Scholar 

  3. Guliyev, N.J., Ismailov, V.E.: Approximation capability of two hidden layer feedforward neural networks with fixed weights. CoRR abs/2101.09181 (2021)

    Google Scholar 

  4. Harrison, M.A.: On the classification of Boolean functions by the general linear and affine groups. J. Soc. Ind. Appl. Math. 12(2), 285–299 (1964)

    Article  MathSciNet  Google Scholar 

  5. Hurst, S.L.: The Logical Processing of Digital Signals. Crane Russak & Company Inc., Edward Arnold, New York, London (1978)

    MATH  Google Scholar 

  6. Lukac, M., Moraga, C., Kameyama, M.: Properties of bent functions in the truth domain. In: 2019 International Conference on Information and Digital Technologies (IDT), pp. 304–310 (2019)

    Google Scholar 

  7. Mhaskar, H., Liao, Q., Poggio, T.A.: Learning real and Boolean functions: when is deep better than shallow. CoRR abs/1603.00988 (2016)

    Google Scholar 

  8. Oliveira, A.L., Sangiovanni-Vincentelli, A.: Learning complex Boolean functions: algorithms and applications. In: Proceedings of the 6th International Conference on Neural Information Processing Systems (NIPS 1993), p. 911–918. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  9. Sadohara, K.: Learning of Boolean functions using support vector machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS, vol. 2225, pp. 106–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45583-3_10

    Chapter  MATH  Google Scholar 

  10. Sasao, T.: Switching Theory For Logic Synthesis. Cluver Academic Publishers, Boston/London/Dordrecht (1999)

    Book  Google Scholar 

  11. Tavares, A.R., Avelar, P., Flach, J.M., Nicolau, M., Lamb, L.C., Vardi, M.: Understanding Boolean function learnability on deep neural networks (2020)

    Google Scholar 

  12. Tsai, C.C., Marek-Sadowska, M.: Boolean functions classification via fixed polarity reed-muller forms. IEEE Tran. Comput. 46(2), 173–186 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lukac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukac, M., Podlaski, K., Kameyama, M. (2022). Approximate Function Classification. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics