Skip to main content

Isogeometric Analysis of Bound States of a Quantum Three-Body Problem in 1D

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13351))

Included in the following conference series:

  • 1145 Accesses

Abstract

In this paper, we initiate the study of isogeometric analysis (IGA) of a quantum three-body problem that has been well-known to be difficult to solve. In the IGA setting, we represent the wavefunctions by linear combinations of B-spline basis functions and solve the problem as a matrix eigenvalue problem. The eigenvalue gives the eigenstate energy while the eigenvector gives the coefficients of the B-splines that lead to the eigenstate. The major difficulty of isogeometric or other finite-element-method-based analyses lies in the lack of boundary conditions and a large number of degrees of freedom required for accuracy. For a typical many-body problem with attractive interaction, there are bound and scattering states where bound states have negative eigenvalues. We focus on bound states and start with the analysis for a two-body problem. We demonstrate through various numerical experiments that IGA provides a promising technique to solve the three-body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Princeton University Press, Princeton (2014)

    Book  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  3. Baer, M.: Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. Wiley, Hoboken (2006)

    Book  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, Chelmsford (2001)

    MATH  Google Scholar 

  5. Breen, P.G., Foley, C.N., Boekholt, T., Zwart, S.P.: Newton versus the machine: solving the chaotic three-body problem using deep neural networks. Mon. Notices Royal Astron. Soc. 494(2), 2465–2470 (2020)

    Article  Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). https://doi.org/10.1007/978-0-387-70914-7

  7. Calo, V., Deng, Q., Puzyrev, V.: Dispersion optimized quadratures for isogeometric analysis. J. Comput. Appl. Math. 355, 283–300 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cederbaum, L.S.: Born-Oppenheimer approximation and beyond for time-dependent electronic processes. J. Chem. Phys. 128(12), 124101 (2008)

    Article  Google Scholar 

  9. Ciarlet, P.G.: Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  10. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Meth. Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)

    Article  MathSciNet  Google Scholar 

  11. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Book  Google Scholar 

  12. De Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6333-3

    Book  MATH  Google Scholar 

  13. Deng, Q., Calo, V.: Dispersion-minimized mass for isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 341, 71–92 (2018)

    Article  MathSciNet  Google Scholar 

  14. Deng, Q., Ern, A.: SoftFEM: revisiting the spectral finite element approximation of second-order elliptic operators. Comput. Math. Appl. 101, 119–133 (2021)

    Article  MathSciNet  Google Scholar 

  15. Drut, J.E., McKenney, J.R., Daza, W.S., Lin, C.L., Ordóñez, C.R.: Quantum anomaly and thermodynamics of one-dimensional fermions with three-body interactions. Phys. Rev. Lett. 120(24), 243002 (2018)

    Article  Google Scholar 

  16. Efremov, M.A., Plimak, L., Berg, B., Ivanov, M.Y., Schleich, W.P.: Efimov states in atom-molecule collisions. Phys. Rev. A 80(2), 022714 (2009)

    Article  Google Scholar 

  17. Ern, A., Guermond, J.L.: Finite Elements II: Galerkin Approximation, Elliptic and Mixed PDEs. Springer, New York (2020). https://doi.org/10.1007/978-3-030-56923-5

    Book  MATH  Google Scholar 

  18. Fonseca, A.C., Redish, E.F., Shanley, P.: Efimov effect in an analytically solvable model. Nucl. Phys. A 320(2), 273–288 (1979)

    Article  Google Scholar 

  19. Griffiths, D.J., Schroeter, D.F.: Introduction to Quantum Mechanics. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  20. Guo, P., Gasparian, V.: Numerical approach for finite volume three-body interaction. Phys. Rev. D 97(1), 014504 (2018)

    Article  MathSciNet  Google Scholar 

  21. Happ, L., Zimmermann, M., Betelu, S.I., Schleich, W.P., Efremov, M.A.: Universality in a one-dimensional three-body system. Phys. Rev. A 100(1), 012709 (2019)

    Article  MathSciNet  Google Scholar 

  22. Happ, L., Zimmermann, M., Efremov, M.A.: Universality of excited three-body bound states in one dimension. J. Phys. B At. Mol. Opt. Phys. 55(1), 015301 (2022)

    Article  Google Scholar 

  23. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  24. Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Meth. Appl. Mech. Eng. 272, 290–320 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \(p\)-method finite elements with \(k\)-method NURBS. Comput. Meth. Appl. Mech. Eng. 197(49–50), 4104–4124 (2008)

    Article  MathSciNet  Google Scholar 

  26. Letellier, C.: Chaos in Nature, vol. 94. World Scientific, Singapore (2019)

    MATH  Google Scholar 

  27. Nielsen, E., Fedorov, D.V., Jensen, A.S., Garrido, E.: The three-body problem with short-range interactions. Phys. Rep. 347(5), 373–459 (2001)

    Article  MathSciNet  Google Scholar 

  28. Panati, G., Spohn, H., Teufel, S.: The time-dependent Born-Oppenheimer approximation. ESAIM: Math. Model. Numer. Anal. 41(2), 297–314 (2007)

    Google Scholar 

  29. Piegl, L., Tiller, W.: The NURBS Book. Springer, Cham (1997). https://doi.org/10.1007/978-3-642-97385-7

  30. Pisana, S., et al.: Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6(3), 198–201 (2007)

    Article  Google Scholar 

  31. Puzyrev, V., Deng, Q., Calo, V.M.: Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes. Comput. Meth. Appl. Mech. Eng. 320, 421–443 (2017)

    Article  MathSciNet  Google Scholar 

  32. Scherrer, A., Agostini, F., Sebastiani, D., Gross, E., Vuilleumier, R.: On the mass of atoms in molecules: beyond the Born-Oppenheimer approximation. Phys. Rev. X 7(3), 031035 (2017)

    Google Scholar 

  33. Skorniakov, G., Ter-Martirosian, K.: Three body problem for short range forces. I. Scattering of low energy neutrons by deuterons. Soviet Phys. JETP 4 (1957)

    Google Scholar 

  34. Sukhareva, O.M., Grigorenko, L.V., Kostyleva, D.A., Zhukov, M.V.: Validity of quasi-classical approaches to true three-body decays. In: Orr, N.A., Ploszajczak, M., Marqués, F.M., Carbonell, J. (eds.) FB22 2018. SPP, vol. 238, pp. 283–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32357-8_50

    Chapter  MATH  Google Scholar 

  35. Thies, J., Hof, M.T., Zimmermann, M., Efremov, M.: Exploiting tensor structure for computing bound states of the quantum mechanical three-body problem. arXiv preprint arXiv:2111.02534 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanling Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Q. (2022). Isogeometric Analysis of Bound States of a Quantum Three-Body Problem in 1D. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics