Skip to main content

1D Painless Multi-level Automatic Goal-Oriented h and p Adaptive Strategies Using a Pseudo-Dual Operator

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

The main idea of our Goal-Oriented Adaptive (GOA) strategy is based on performing global and uniform h- or p-refinements (for h- and p-adaptivity, respectively) followed by a coarsening step, where some basis functions are removed according to their estimated importance. Many Goal-Oriented Adaptive strategies represent the error in a Quantity of Interest (QoI) in terms of the bilinear form and the solution of the direct and adjoint problems. However, this is unfeasible when solving indefinite or non-symmetric problems since symmetric and positive definite forms are needed to define the inner product that guides the refinements. In this work, we provide a Goal-Oriented Adaptive (h- or p-) strategy whose error in the QoI is represented in another bilinear symmetric positive definite form than the one given by the adjoint problem. For that purpose, our Finite Element implementation employs a multi-level hierarchical data structure that imposes Dirichlet homogeneous nodes to avoid the so-called hanging nodes. We illustrate the convergence of the proposed approach for 1D Helmholtz and convection-dominated problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez-Aramberri, J., Pardo, D., Barucq, H.: A secondary field based hp-finite element method for the simulation of magnetotelluric measurements. J. Comput. Sci. 11, 137–144 (2015)

    Article  MathSciNet  Google Scholar 

  2. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta numerica 10, 1–102 (2001)

    Article  MathSciNet  Google Scholar 

  3. Darrigrand, V., Pardo, D., Chaumont-Frelet, T., Gómez-Revuelto, I., Garcia-Castillo, L.E.: A painless automatic hp-adaptive strategy for elliptic problems. Finite Elem. Anal. Des. 178, 103424 (2020). https://doi.org/10.1016/j.finel.2020.103424

    Article  MathSciNet  Google Scholar 

  4. Darrigrand, V., Pardo, D., Muga, I.: Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation. Comput. Math. Appl. 69(9), 964–979 (2015). https://doi.org/10.1016/j.camwa.2015.03.006, http://www.sciencedirect.com/science/article/pii/S0898122115001017

  5. Darrigrand, V., Rodríguez-Rozas, Á., Muga, I., Pardo, D., Romkes, A., Prudhomme, S.: Goal-oriented adaptivity using unconventional error representations for the multi-dimensional Helmholtz equation. Int. J. Numerical Methods Eng. 113(1), 22–42 (2018). https://doi.org/10.1002/nme.5601, http://dx.doi.org/10.1002/nme.5601, nme.5601

  6. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic \(hp\)-adaptivity. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 117–142 (2002). https://doi.org/10.1023/A:1015192312705,http://dx.doi.org/10.1023/A:1015192312705

  7. Demkowicz, L.: Computing with \(hp\)-adaptive finite elements. One and two dimensional elliptic and Maxwell problems. Applied Mathematics and Nonlinear Science Series, vol. 1. Chapman & Hall/CRC, Boca Raton (2007). https://doi.org/10.1201/9781420011692, http://dx.doi.org/10.1201/9781420011692

  8. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with \(hp\)-adaptive finite elements. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. Applied Mathematics and Nonlinear Science Series, vol. 2. Chapman & Hall/CRC, Boca Raton (2008)

    Google Scholar 

  9. Demkowicz, L., Oden, J.T., Rachowicz, W., Hardy, O.: Toward a universal hp adaptive finite element strategy, part 1. Constrained approximation and data structure. Comput. Methods Appl. Mech. Eng. 77(1–2), 79–112 (1989)

    Google Scholar 

  10. Hintermüller, M., Hinze, M., Kahle, C., Keil, T.: A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard-Navier-stokes system. Optim. Eng. 19(3), 629–662 (2018)

    Article  MathSciNet  Google Scholar 

  11. Jhurani, C., Demkowicz, L.: Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: mathematical formulation and numerical results. Comput. Methods Appl. Mech. Eng. 213, 399–417 (2012)

    Google Scholar 

  12. Key, K.: Mare2dem: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys. J. Int. 207(1), 571–588 (2016)

    Article  MathSciNet  Google Scholar 

  13. Muñoz-Matute, J., Alberdi, E., Pardo, D., Calo, V.M.: Time-domain goal-oriented adaptivity using pseudo-dual error representations. Comput. Methods Appl. Mech. Eng. 325, 395–415 (2017)

    Article  MathSciNet  Google Scholar 

  14. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5-6), 735–756 (2001). https://doi.org/10.1016/S0898-1221(00)00317-5, http://dx.doi.org/10.1016/S0898-1221(00)00317-5

  15. Ovall, J.S.: Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numerische Mathematik 102(3), 543–558 (2006)

    Article  MathSciNet  Google Scholar 

  16. Pardo, D., Demkowicz, L., Torres-Verdín, C., Paszynski, M.: Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented \(hp\) finite element method. SIAM J. Appl. Math. 66(6), 2085–2106 (2006). https://doi.org/10.1137/050631732, http://dx.doi.org/10.1137/050631732

  17. Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176(1–4), 313–331 (1999). https://doi.org/10.1016/S0045-7825(98)00343-0, http://dx.doi.org/10.1016/S0045-7825(98)00343-0

  18. Romkes, A., Oden, J.T.: Adaptive modeling of wave propagation in heterogeneous elastic solids. Comput. Methods Appl. Mech. Eng. 193(6–8), 539–559 (2004)

    Article  MathSciNet  Google Scholar 

  19. Van Der Zee, K.G., Tinsley Oden, J., Prudhomme, S., Hawkins-Daarud, A.: Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition. Numer. Methods Partial Differ. Eqn. 27(1), 160–196 (2011)

    Article  MathSciNet  Google Scholar 

  20. Zander, N., Bog, T., Elhaddad, M., Frischmann, F., Kollmannsberger, S., Rank, E.: The multi-level \(hp\)-method for three-dimensional problems: dynamically changing high-order mesh refinement with arbitrary hanging nodes. Comput. Methods Appl. Mech. Eng. 310, 252–277 (2016). https://doi.org/10.1016/j.cma.2016.07.007, http://www.sciencedirect.com/science/article/pii/S0045782516307289

  21. Zander, N., Bog, T., Kollmannsberger, S., Schillinger, D., Rank, E.: Multi-level \(hp\)-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput. Mech. 55(3), 499–517 (2015). https://doi.org/10.1007/s00466-014-1118-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Zander, N.D.: Multi-level \(hp\)-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes. Ph.D. thesis, Technische Universität München (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Vinicio Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caro, F.V., Darrigrand, V., Alvarez-Aramberri, J., Celaya, E.A., Pardo, D. (2022). 1D Painless Multi-level Automatic Goal-Oriented h and p Adaptive Strategies Using a Pseudo-Dual Operator. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics