Skip to main content

Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13351))

Included in the following conference series:

Abstract

Physics-informed neural networks allow models to be trained by physical laws described by general nonlinear partial differential equations. However, traditional architectures of this approach struggle to solve more challenging time-dependent problems. In this work, we present a novel physics-informed framework for solving time-dependent partial differential equations. Using only the governing differential equations and problem initial and boundary conditions, we generate a latent representation of the problem’s spatio-temporal dynamics. Our model utilizes discrete cosine transforms to encode spatial frequencies and re-current neural networks to process the time evolution. This efficiently and flexibly produces a compressed representation which is used for additional conditioning of physics-informed models. We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations. Our proposed model achieves state-of-the-art performance on the Taylor-Green vortex relative to other physics-informed baseline models.

B. Wu and W. Byeon—Equal contribution.

B. Wu—Work done during NVIDIA AI Research Residency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar, L., Sochen, N.: Unsupervised deep learning algorithm for PDE-based forward and inverse problems. arXiv:1904.05417 (2019)

  2. Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.: Prediction of aerodynamic flow fields using convolutional neural networks. Comput. Mech. 64(2), 525–545 (2019). https://doi.org/10.1007/s00466-019-01740-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014)

  4. Esmaeilzadeh, S., et al.: MeshfreeFlowNet: a physics-constrained deep continuous space-time super-resolution framework. In: SC20, pp. 1–15. IEEE (2020)

    Google Scholar 

  5. Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: KDD (2016)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Hennigh, O.: Lat-net: compressing Lattice Boltzmann flow simulations using deep neural networks. arXiv:1705.09036 (2017)

  8. Hennigh, O., et al.: NVIDIA SimNet™: an AI-accelerated multi-physics simulation framework. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12746, pp. 447–461. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77977-1_36

    Chapter  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Kashefi, A., Mukerji, T.: Physics-informed PointNet: a deep learning solver for steady-state incompressible flows and thermal fields on multiple sets of irregular geometries. arXiv:2202.05476 (2022)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  12. Li, Z., et al.: Fourier neural operator for parametric partial differential equations (2020)

    Google Scholar 

  13. Mattey, R., Ghosh, S.: A physics informed neural network for time-dependent nonlinear and higher order partial differential equations. arXiv:2106.07606 (2021)

  14. Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN: parareal physics-informed neural network for time-dependent PDEs. Comput. Methods Appl. Mech. Eng. 370, 113250 (2020)

    Google Scholar 

  15. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  16. Smith, J.D., Azizzadenesheli, K., Ross, Z.E.: EikoNet: solving the eikonal equation with deep neural networks. IEEE Trans. Geosci. Remote Sens. 59(12), 10685–10696 (2020). IEEE

    Google Scholar 

  17. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 158(895), 499–521 (1937). The Royal Society London

    Google Scholar 

  18. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: CVPR, pp. 1740–1749 (2020)

    Google Scholar 

  19. Yu, B., et al.: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. arXiv:1710.00211 (2017)

  20. Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification. J. Comput. Phys. 366, 415–447 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonmin Byeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, B., Hennigh, O., Kautz, J., Choudhry, S., Byeon, W. (2022). Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics