Skip to main content

Recursive Singular Value Decomposition Compression of Refined Isogeometric Analysis Matrices as a Tool to Speedup Iterative Solvers Performance

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

The isogeometric analysis (IGA) uses higher-order and continuity basis functions as compared to the traditional finite element method. IGA has many applications in simulations of time-dependent problems. These simulations are often performed using an explicit time-integration scheme, which requires the solution of a system of linear equations with the mass matrix, constructed with high-order and continuity basis functions. The iterative solvers are most commonly applied for large problems simulated over complex geometry. This paper focuses on recursive decomposition of the mass matrix using the Singular Value Decomposition algorithm (SVD). We build a recursive tree, where submatrices are expressed as multi-columns multiplied by multi-rows. When we keep the mass matrix compressed in such a way, the multiplication of a matrix by a vector, as performed by an iterative solver, can be performed in O(Nr) instead of \(O(N^2)\) computational cost, where N is the number of rows of input matrix, r is the number of singular values bigger than given value. Next, we focus on refined isogeometric analysis (rIGA). We introduce the C0 separators into IGA submatrices and analyze the SVD recursive compression and computational cost of an iterative solver when increasing the patch size and the order of B-spline basis functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Austin Cottrell, J., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Computational and Numerical Methods, Wiley, Hoboken (2009)

    Book  Google Scholar 

  2. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  3. Paszyński, M.: Classical and isogeometric finite element method. https://epodreczniki.open.agh.edu.pl/handbook/1088/module/1173/reader

  4. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput. Fluids 49(1), 93–100 (2011)

    Article  MathSciNet  Google Scholar 

  5. Hossain, S., Hossainy, S.F.A., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-speciffic coronary artery walls. Comput. Mech. 2, 213–242 (2011)

    MATH  Google Scholar 

  6. Łoś, M., Kłusek, A., Hassaan, M.A., Pingali, K., Dzwinel, W., Paszyński, M.: Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations. Comput. Methods Appl. Mech. Eng. 343, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  7. Łoś, M., Paszyński, M., Kłusek, K., Dzwinel, W.: Application of fast isogeometric L2 projection solver for tumor growth simulations. Comput. Methods Appl. Mech. Eng. 316, 1257–1269 (2017)

    Article  MathSciNet  Google Scholar 

  8. Garcia, D., Pardo, D., Dalcin, L., Paszynski, M., Collier, N., Calo, V.M.: The value of continuity: refined isogeometric analysis and fast direct solvers. Comput. Methods Appl. Mech. Eng. 316, 586–605 (2017)

    Article  MathSciNet  Google Scholar 

  9. Garcia, D., Pardo, D., Dalcin, L., Calo, V.M.: Refined isogeometric analysis for a preconditioned conjugate gradient solver. Comput. Methods Appl. Mech. Eng. 335, 490–509 (2018)

    Article  MathSciNet  Google Scholar 

  10. Garcia, D., Pardo, M., Calo, V.M.: Refined isogeometric analysis for fluid mechanics and electromagnetics. Comput. Methods Appl. Mech. Eng. 356, 598–628 (2019)

    Article  MathSciNet  Google Scholar 

  11. Łoś, M., Woz, M., Paszyński, M., Dalcin, L., Calo, V.M.: Dynamics with matrices possessing Kronecker product structure. Procedia Comput. Sci. 51, 286–295 (2015)

    Article  Google Scholar 

  12. Saad, J.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  13. Golub, G.H., Van Loan, C.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47324-5

    Book  MATH  Google Scholar 

  15. Mantzaflaris, A., Juttler, B., Khoromskij, B., Langer, U.: Matrix generation in isogeometric analysis by low rank tensor approximation. In: International Conference on Curves and Surfaces, pp. 321–340 (2015)

    Google Scholar 

  16. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  17. Bazilevs, Y., et al.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Paszynska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobija, M., Paszynska, A. (2022). Recursive Singular Value Decomposition Compression of Refined Isogeometric Analysis Matrices as a Tool to Speedup Iterative Solvers Performance. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics