Skip to main content

Neural-Network Based Adaptation of Variation Operators’ Parameters for Metaheuristics

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

The paper presents an idea of training an artificial neural network a relation between different parameters observed for a population in a metaheuristic algorithm. Then such trained network may be used for controlling other algorithms (if the network is trained in such way, that the knowledge gathered by it becomes agnostic regarding the problem). The paper focuses on showing the idea and also provides selected experimental results obtained after applying the proposed algorithm for solving popular benchmark problems in different dimensions.

The research presented in this paper has been financially supported by: Polish National Science Center Grant no. 2019/35/O/ST6/00570 “Socio-cognitive inspirations in classic metaheuristics.” (A.U.) and Polish Ministry of Education and Science funds assigned to AGH University of Science and Technology (T.P-P., M.K-D., A.B.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Aine, S., Kumar, R., Chakrabarti, P.P.: Adaptive parameter control of evolutionary algorithms under time constraints. In: Tiwari, A., Roy, R., Knowles, J., Avineri, E., Dahal, K. (eds.) Applications of Soft Computing. AISC, vol. 36, pp. 373–382. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36266-1_36

    Chapter  Google Scholar 

  3. Auger, A., Le Bris, C., Schoenauer, M.: Dimension-independent convergence rate for non-isotropic (1, \(\lambda \)) — ES. In: Cantú-Paz, E., et al. (eds.) GECCO 2003, Part I. LNCS, vol. 2723, pp. 512–524. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_64

    Chapter  Google Scholar 

  4. Bäck, T., Eiben, A.E., van der Vaart, N.A.L.: An emperical study on GAs “without parameters’’. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 315–324. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_31

    Chapter  Google Scholar 

  5. Bassin, A., Buzdalov, M.: The 1/5-th rule with rollbacks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, July 2019. https://doi.org/10.1145/3319619.3322067. http://dx.doi.org/10.1145/3319619.3322067

  6. Benidis, K., et al.: Neural forecasting: introduction and literature overview. https://arxiv.org/abs/2004.10240 (2020)

  7. Benítez-Hidalgo, A., Nebro, A.J., García-Nieto, J., Oregi, I., Del Ser, J.: jMetalPY: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019). https://doi.org/10.1016/j.swevo.2019.100598. https://www.sciencedirect.com/science/article/pii/S2210650219301397

  8. Botalb, A., Moinuddin, M., Al-Saggaf, U.M., Ali, S.S.A.: Contrasting Convolutional Neural Network (CNN) with Multi-Layer Perceptron (MLP) for big data analysis. In: 2018 International Conference on Intelligent and Advanced System (ICIAS), pp. 1–5 (2018). https://doi.org/10.1109/ICIAS.2018.8540626

  9. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the First European Conference on Artificial Life, pp. 263–271. MIT Press (1992)

    Google Scholar 

  10. Corriveau, G., Guilbault, R., Tahan, A., Sabourin, R.: Bayesian network as an adaptive parameter setting approach for genetic algorithms. Complex Intell. Syst. 2(1), 1–22 (2016). https://doi.org/10.1007/s40747-016-0010-z

    Article  Google Scholar 

  11. Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions for evolutionary algorithms. Int. J. Comput. Math. 79, 403–416 (2002)

    Article  MathSciNet  Google Scholar 

  13. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1, 19–31 (2011). https://doi.org/10.1016/j.swevo.2011.02.001

  14. Eiben, A.E., Smith, J.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. Stud. Comput. Intell. 54, 19–46 (2007)

    Article  Google Scholar 

  15. Gomes Pereira De Lacerda, M., Filipe De Araujo Pessoa, L., Buarque De Lima Neto, F., Ludermir, T.B., Kuchen, H.: A systematic literature review on general parameter control for evolutionary and swarm-based algorithms. Swarm Evol. Comput. 60, 100777 (2021). https://doi.org/10.1016/j.swevo.2020.100777. www.elsevier.com/locate/swevo

  16. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996). https://doi.org/10.1109/ICEC.1996.542381

  17. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015). https://doi.org/10.1109/TEVC.2014.2308294

    Article  Google Scholar 

  18. Maturana, J., Saubion, F.: On the design of adaptive control strategies for evolutionary algorithms. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 303–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79305-2_26

    Chapter  Google Scholar 

  19. McGinley, B., Maher, J., O’Riordan, C., Morgan, F.: Maintaining healthy population diversity using adaptive crossover, mutation, and selection. IEEE Trans. Evol. Comput. 15(5), 692–714 (2011)

    Article  Google Scholar 

  20. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  21. Morrison, R., De Jong, K.: Measurement of population diversity, vol. 2310, pp. 31–41, October 2001

    Google Scholar 

  22. Narendra, K.S., Parthasarathy, K.: Neural networks and dynamical systems. Int. J. Approx. Reason. 6(2), 109–131 (1992). https://doi.org/10.1016/0888-613X(92)90014-Q

    Article  MATH  Google Scholar 

  23. Paternain, S., Morari, M., Ribeiro, A.: Real-time model predictive control based on prediction-correction algorithms. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 5285–5291. IEEE (2019). https://doi.org/10.1109/CDC40024.2019.9029408

  24. Sammut, C., Webb, G.I. (eds.): Mean Squared Error, p. 653. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8

  25. Schumer, M., Steiglitz, K.: Adaptive step size random search. Autom. Contr. IEEE Trans. AC13, 270–276 (1968). https://doi.org/10.1109/TAC.1968.1098903

  26. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, New York (1981)

    MATH  Google Scholar 

  27. Shiblee, M., Kalra, P.K., Chandra, B.: Time series prediction with multilayer perceptron (MLP): a new generalized error based approach. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 37–44. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03040-6_5

    Chapter  Google Scholar 

  28. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary algorithms. In: 2009 IEEE Congress on Evolutionary Computation, pp. 399–406. IEEE (2009)

    Google Scholar 

  29. Wang, J., Li, X., Li, J., Sun, Q., Wang, H.: NGCU: a new RNN model for time-series data prediction. Big Data Res. 27, 100296 (2022). https://doi.org/10.1016/j.bdr.2021.100296

    Article  Google Scholar 

  30. Werbos, P.J.: Consistency of HDP applied to a simple reinforcement learning problem. Neural Netw. 3(2), 179–189 (1990). https://doi.org/10.1016/0893-6080(90)90088-3

    Article  Google Scholar 

  31. Zhu, K.Q., Liu, Z.: Population diversity in permutation-based genetic algorithm. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 537–547. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Byrski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrzański, T., Urbańczyk, A., Pełech-Pilichowski, T., Kisiel-Dorohinicki, M., Byrski, A. (2022). Neural-Network Based Adaptation of Variation Operators’ Parameters for Metaheuristics. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics