Skip to main content

Modeling Contrast Perfusion and Adsorption Phenomena in the Human Left Ventricle

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

This work presents a mathematical model to describe perfusion dynamics in cardiac tissue. The new model extends a previous one and can reproduce clinical exams of contrast-enhanced cardiac magnetic resonance imaging (MRI) of the left ventricle obtained from patients with cardiovascular diseases, such as myocardial infarct. The model treats the extra- and intravascular domains as different porous media where Darcy’s law is adopted. Reaction-diffusion-advection equations are used to capture the dynamics of contrast agents that are typically used in MRI perfusion exams. The identification of the myocardial infarct region is modeled via adsorption of the contrast agent on the extracellular matrix. Different scenarios were simulated and compared with clinical images: normal perfusion, endocardial ischemia due to stenosis, and myocardial infarct. Altogether, the results obtained suggest that the models can support the process of non-invasive cardiac perfusion quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves, J.R., de Queiroz, R.A., Bär, M., Dos Santos, R.W.: Simulation of the perfusion of contrast agent used in cardiac magnetic resonance: a step toward non-invasive cardiac perfusion quantification. Front. Physiol. 10, 177 (2019)

    Article  Google Scholar 

  2. Alves, J., de Queiroz, R., dos Santos, R.: Simulation of cardiac perfusion by contrast in the myocardium using a formulation of flow in porous media. J. Comput. Appl. Math. 295, 13–24 (2016)

    Article  MathSciNet  Google Scholar 

  3. Arai, A.E.: The cardiac magnetic resonance (CMR) approach to assessing myocardial viability. J. Nucl. Cardiol. 18(6), 1095–1102 (2011)

    Article  Google Scholar 

  4. Bassingthwaighte, J., Wang, C., Chan, I.: Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ. Res. 65(4), 997–1020 (1989)

    Article  Google Scholar 

  5. Bayer, J.D., Blake, R.C., Plank, G., Trayanova, N.A.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)

    Article  Google Scholar 

  6. Brooks, A.N., Hughes, T.J.: Streamline Upwind/Petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  7. Cookson, A.N., et al.: A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging. Med. Image Anal. 18(7), 1200–1216 (2014)

    Article  Google Scholar 

  8. Costa, C.M., et al.: Pacing in proximity to scar during cardiac resynchronization therapy increases local dispersion of repolarization and susceptibility to ventricular arrhythmogenesis. Heart Rhythm 16(10), 1475–1483 (2019)

    Article  Google Scholar 

  9. Daly, C., Kwong, R.Y.: Cardiac MRI for myocardial ischemia. Methodist Debakey Cardiovasc. J. 9(3), 123 (2013)

    Article  Google Scholar 

  10. Duran, O., Devloo, P.R., Gomes, S.M., Valentin, F.: A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. Comput. Methods Appl. Mech. Eng. 354, 213–244 (2019)

    Article  MathSciNet  Google Scholar 

  11. Knowles, B.R., et al.: Pharmacokinetic modeling of delayed gadolinium enhancement in the myocardium. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 60(6), 1524–1530 (2008)

    Article  Google Scholar 

  12. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, vol. 84. Springer, New York (2012). https://doi.org/10.1007/978-3-642-23099-8

  13. Mehta, P.K., Wei, J., Wenger, N.K.: Ischemic heart disease in women: a focus on risk factors. Trends Cardiovasc. Med. 25(2), 140–151 (2015)

    Article  Google Scholar 

  14. Mendonca, C.C., Neic, A., et al.: A virtual cohort of twenty-four left-ventricular models of ischemic cardiomyopathy patients. King’s College London Dataset (2020)

    Google Scholar 

  15. Michler, C., et al.: A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model. Int. J. Numer. Methods Biomed. Eng. 29(2), 217–232 (2013)

    Article  MathSciNet  Google Scholar 

  16. Neic, A., Gsell, M.A., Karabelas, E., Prassl, A.J., Plank, G.: Automating image-based mesh generation and manipulation tasks in cardiac modeling workflows using Meshtool. SoftwareX 11, 100454 (2020)

    Article  Google Scholar 

  17. Niederer, S.A., et al.: Creation and application of virtual patient cohorts of heart models. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378(2173), 20190558 (2020)

    Article  Google Scholar 

  18. Taylor, C.A., Fonte, T.A., Min, J.K.: Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61(22), 2233–2241 (2013)

    Article  Google Scholar 

  19. Wang, J., et al.: Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs. Acta Pharmacologica Sinica 36(4), 463–472 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UFJF, CAPES, CNPq (Grants 310722/2021-7, 315267/2020-8), and FAPEMIG (Grants APQ-01340-18, APQ 02489/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Weber dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaio, E.D., Rocha, B.M., dos Santos, R.W. (2022). Modeling Contrast Perfusion and Adsorption Phenomena in the Human Left Ventricle. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08754-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08753-0

  • Online ISBN: 978-3-031-08754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics