Abstract
The widely addressed topic of ontology alignment to this day contains several open research questions that remain either unanswered or only vaguely tackled. One of them is designating alignments of concept instances, which according to the literature are addressed in a handful of publications. Therefore, in this paper we propose a formal framework based on fuzzy logic that can be used to determine such mappings. We provide several similarity functions and a set of inference rules for combining them. The approach has been experimentally verified using widely accepted datasets provided by the Ontology Alignment Evaluation Initiative, yielding promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguirre, J.L., et al.: Results of the ontology alignment evaluation initiative 2012. In: Proceedings of the 7th International Ontology Matching Workshop, Boston (MA, US), pp. 73–115 (2012)
Algergawy, A., et al.: Results of the ontology alignment evaluation initiative 2018. In: Proceedings of the 13th International Workshop on Ontology Matching Co-located with the 17th ISWC (OM 2018), vol. 2288, pp. 76–116 (2018)
Ardjani, F., Bouchiha, D., Malki, M.: Ontology-alignment techniques: survey and analysis. I.J. Mod. Educ. Comput. Sci. 11, 67–78 (2015). https://doi.org/10.5815/ijmecs.2015.11.08
Cheatham, M., Pesquita, C., Oliveira, D., McCurdy, H.B.: The properties of property alignment on the semantic web. Int. J. Metadata Semant. Ontol. 13(1), 42–56 (2018)
Cingolani, P., Alcalá-Fdez, J.: jFuzzyLogic: a java library to design fuzzy logic controllers according to the standard for fuzzy control programming. Int. J. Comput. Intell. Syst. 6(Suppl.), 61–75 (2013)
de Lourdes Martínez-Villaseñor, M., González-Mendoza, M.: Fuzzy-based approach of concept alignment. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.) UCAmI 2017. LNCS, vol. 10586, pp. 172–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67585-5_18
Daskalaki E., Flouris G., Fundulaki I., Saveta T.: Instance matching benchmarks in the era of linked data. J. Web Semant. 39, 1–14 (2016)
Faria, D., et al.: Results of AML participation in OAEI 2018. In: Proceedings of the 13th International Workshop on Ontology Matching Co-located with the 17th International Semantic Web Conference, vol. 2288 (2018)
Fernández, S., Velasco, J.R., López-Carmona, M.A.: A fuzzy rule-based system for ontology mapping. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS (LNAI), vol. 5925, pp. 500–507. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11161-7_35
Hnatkowska, B., Kozierkiewicz, A., Pietranik, M.: Semi-automatic definition of attribute semantics for the purpose of ontology integration. IEEE Access 8, 107272–107284 (2020). https://doi.org/10.1109/ACCESS.2020.3000035
Hnatkowska, B., Kozierkiewicz, A., Pietranik, M.: Fuzzy based approach to ontology relations alignment. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE (2021)
Huber, J., Sztyler, T., Noessner, J., Meilicke, C.: CODI: combinatorial optimization for data integration-results for OAEI 2011. In: Proceedings of the 6th International Conference on Ontology Matching, vol. 814, pp. 134–141 (2011)
Pietranik, M., Nguyen, N.T.: Semantic distance measure between ontology concept’s attributes. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6881, pp. 210–219. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23851-2_22
Ruiz, E.J., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. In: The 20th European Conference on Artificial Intelligence (ECAI 2012) (2012)
Taheri, A., Shamsfard, M.: SBUEI: results for OAEI 2012. In: Ontology Matching (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hnatkowska, B., Kozierkiewicz, A., Pietranik, M. (2022). Fuzzy Logic Framework for Ontology Instance Alignment. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_68
Download citation
DOI: https://doi.org/10.1007/978-3-031-08754-7_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08753-0
Online ISBN: 978-3-031-08754-7
eBook Packages: Computer ScienceComputer Science (R0)