Abstract
Heart rate (HR) is one of the important vital parameters of the human body and understanding this vital sign provides key insights into human wellness. Imaging photoplethysmography (iPPG) allows HR detection from video recordings and its unbeatable compliance over the state of art methods has made much attention among researchers. Since it is a camera-based technique, measurement accuracy depends on the quality of input images. In this paper, we present a pipeline for efficient measurement of HR that includes a learning-based super-resolution preprocessing step. This preprocessing image enhancement step has shown promising results on low-resolution input images and works better on iPPG algorithms. The experimental results verified the reliability of this method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3) (2007). https://doi.org/10.1088/0967-3334/28/3/R01
Pavlidis, I., Dowdall, J., Sun, N., Puri, C., Fei, J., Garbey, M.: Interacting with human physiology. Comput. Vis. Image Underst. (2007). https://doi.org/10.1016/j.cviu.2006.11.018
Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21 434–21 445 (2008)
Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010). https://doi.org/10.1364/OE.18.010762
Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22
Hu, M., Qian, F., Guo, D., Wang, X., He, L., Ren, F.: ETA-rPPGNet: effective time-domain attention network for remote heart rate measurement. IEEE Trans. Instrum. Meas. 70 (2021). https://doi.org/10.1109/TIM.2021.3058983
Liu, X., Jiang, Z., Fromm, J., Xu, X., Patel, S., McDuff, D.: MetaPhys: few-shot adaptation for non-contact physiological measurement. In: ACM CHIL 2021–Proceedings of the 2021 ACM Conference on Health, Inference, and Learning, vol. 1, Issue 1. Association for Computing Machinery (2021). https://doi.org/10.1145/3450439.3451870
Yu, Z., Li, X., Niu, X., Shi, J., Zhao, G.: AutoHR: a strong end-to-end baseline for remote heart rate measurement with neural searching. IEEE Signal Process. Lett. 27, 1245–1249 (2020). https://doi.org/10.1109/LSP.2020.3007086
Hoffman, W.F.C., Lakens, D.: Addressing reproducibility issues in remote Photoplethysmography (rPPG) research: an investigation of current challenges and release of a public algorithm benchmarking dataset, 25 June 2021. https://doi.org/10.17605/OSF.IO/XJF7U
McDuff, D.J., Blackford, E.B., Estepp, J.R.: The impact of video compression on remote cardiac pulse measurement using imaging Photoplethysmography. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 63–70 (2017). https://doi.org/10.1109/FG.2017.17
Song, R., Zhang, S., Cheng, J., Li, C., Chen, X.: New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method. Comput. Biol. Med. 116(Complete) (2020). https://doi.org/10.1016/j.compbiomed.2019.103535
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Premkumar, K.S., Angelopoulou, A., Kapetanios, E., Chaussalet, T., Hemanth, D.J. (2022). Super-Resolution Convolutional Network for Image Quality Enhancement in Remote Photoplethysmography Based Heart Rate Estimation. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-08757-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08756-1
Online ISBN: 978-3-031-08757-8
eBook Packages: Computer ScienceComputer Science (R0)