Skip to main content

Super-Resolution Convolutional Network for Image Quality Enhancement in Remote Photoplethysmography Based Heart Rate Estimation

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13352))

Included in the following conference series:

  • 1639 Accesses

Abstract

Heart rate (HR) is one of the important vital parameters of the human body and understanding this vital sign provides key insights into human wellness. Imaging photoplethysmography (iPPG) allows HR detection from video recordings and its unbeatable compliance over the state of art methods has made much attention among researchers. Since it is a camera-based technique, measurement accuracy depends on the quality of input images. In this paper, we present a pipeline for efficient measurement of HR that includes a learning-based super-resolution preprocessing step. This preprocessing image enhancement step has shown promising results on low-resolution input images and works better on iPPG algorithms. The experimental results verified the reliability of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3) (2007). https://doi.org/10.1088/0967-3334/28/3/R01

  2. Pavlidis, I., Dowdall, J., Sun, N., Puri, C., Fei, J., Garbey, M.: Interacting with human physiology. Comput. Vis. Image Underst. (2007). https://doi.org/10.1016/j.cviu.2006.11.018

  3. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21 434–21 445 (2008)

    Google Scholar 

  4. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010). https://doi.org/10.1364/OE.18.010762

    Article  Google Scholar 

  5. Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22

    Chapter  Google Scholar 

  6. Hu, M., Qian, F., Guo, D., Wang, X., He, L., Ren, F.: ETA-rPPGNet: effective time-domain attention network for remote heart rate measurement. IEEE Trans. Instrum. Meas. 70 (2021). https://doi.org/10.1109/TIM.2021.3058983

  7. Liu, X., Jiang, Z., Fromm, J., Xu, X., Patel, S., McDuff, D.: MetaPhys: few-shot adaptation for non-contact physiological measurement. In: ACM CHIL 2021–Proceedings of the 2021 ACM Conference on Health, Inference, and Learning, vol. 1, Issue 1. Association for Computing Machinery (2021). https://doi.org/10.1145/3450439.3451870

  8. Yu, Z., Li, X., Niu, X., Shi, J., Zhao, G.: AutoHR: a strong end-to-end baseline for remote heart rate measurement with neural searching. IEEE Signal Process. Lett. 27, 1245–1249 (2020). https://doi.org/10.1109/LSP.2020.3007086

    Article  Google Scholar 

  9. Hoffman, W.F.C., Lakens, D.: Addressing reproducibility issues in remote Photoplethysmography (rPPG) research: an investigation of current challenges and release of a public algorithm benchmarking dataset, 25 June 2021. https://doi.org/10.17605/OSF.IO/XJF7U

  10. McDuff, D.J., Blackford, E.B., Estepp, J.R.: The impact of video compression on remote cardiac pulse measurement using imaging Photoplethysmography. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 63–70 (2017). https://doi.org/10.1109/FG.2017.17

  11. Song, R., Zhang, S., Cheng, J., Li, C., Chen, X.: New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method. Comput. Biol. Med. 116(Complete) (2020). https://doi.org/10.1016/j.compbiomed.2019.103535

  12. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281

  13. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jude Hemanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Premkumar, K.S., Angelopoulou, A., Kapetanios, E., Chaussalet, T., Hemanth, D.J. (2022). Super-Resolution Convolutional Network for Image Quality Enhancement in Remote Photoplethysmography Based Heart Rate Estimation. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics