Skip to main content

Analysis of Parameters Distribution of EEG Signals for Five Epileptic Seizure Phases Modeled by Duffing Van Der Pol Oscillator

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Complex temporal epilepsy belongs to the most common type of brain disorder. Nevertheless, the wave patterns of this type of seizure, especially associated with behavioral changes, are difficult to interpret clinically. A helpful tool seems to be the statistical and time-frequency analysis of modeled epilepsy signals. The main goal of the study is the application of the Van der Pol model oscillator to study brain activity and intra-individual variability during complex temporal seizures registered in one patient. The achievement of the article is the confirmation that the statistical analysis of optimal values of three pairs of parameters of the duffing Van der Pol oscillator model enables the differentiation of the individual phases of the seizure in short-period seizure waves. In addition, the article attempts to compare the real signals recorded during the attack and modeled using frequency and time-frequency analysis. Similarities of power spectra and entropy samples of real and generated signals in low-frequency values are noted, and differences in higher values are explained about the clinical interpretation of the records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, U.R., Molinari, F., Vinitha, S., Chattopadhyay, S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 4(7), 401–408 (2012)

    Article  Google Scholar 

  2. Ghorbanian, P.: Non-Stationary Time Series Analysis and Stochastic Modeling of EEG and its Application to Alzheimer’s Disease. [Doctoral dissertation, Villanova University] (2014)

    Google Scholar 

  3. Ghorbanian, P., Ramakrishnan, S., Ashrafiuon, H.: Stochastic non-linear oscillator models of EEG: the Alzheimer’s disease case. Front. Comput. Neurosci. 9(48) (2015). https://doi.org/10.3389/fncom.2015.00048

  4. Botcharova, M.: Modelling and analysis of amplitude, phase and synchrony in human brain activity patterns. [Doctoral dissertation, University College London] (2014)

    Google Scholar 

  5. Yuan, Y., Xun, G., Jia, K., Zhang, A.: A multi-view deep learning method for epileptic seizure detection using short-time fourier transform. In: ACM-BCB Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, August 2017, pp. 213–222 (2017). https://doi.org/10.1145/3107411.3107419

  6. Szuflitowska, B., Orlowski, P.: Comparison of the EEG signal classifiers LDA, NBC and GNBC based on time-frequency features. Pomiary Automatyka Robotyka 2(21), 39–45 (2017)

    Article  Google Scholar 

  7. Li, M., Chen, W.: FFT-based deep feature learning method for EEG classification. Biomed. Signal Process. Control 66, 102492 (2021)

    Article  Google Scholar 

  8. Chen, G., Xie, W., Bui, T.D., Krzyżak, A.: Automatic epileptic seizure detection in EEG using nonsubsampled wavelet–fourier features. J. Med. Biol. Eng. 37, 123–131(2017)

    Google Scholar 

  9. Khan, N.A., Ali, S.: Classification of EEG signals using adaptive time-frequency distributions. Metrol. Meas. Syst. 23(2), 251–260 (2016)

    Article  Google Scholar 

  10. Kocadaglia, O., Langarib, R.: Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations. Expert Syst. Appl. 88, 419–434 (2017)

    Article  Google Scholar 

  11. Alturki, F.A., AlSharabi, K., Abdurraqeeb, A.M., Aljalal, M.: EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques. Sensors 21(20), 6932 (2021). https://doi.org/10.3390/s21206932

    Article  Google Scholar 

  12. Zhang, Q., Hu, Y., Potter, T., Li, R., Quach, M., Zhang, Y.: Establishing functional brain networks using a nonlinear partial directed coherence method to predict epileptic seizures. J. Neurosci. Methods 329, 108447 (2020)

    Article  Google Scholar 

  13. Shriram, R., Baskar, V.V., Martin, B., Sundhararajan, M., Daimiwal, N.: Energy distribution and coherence-based changes in normal and epileptic electroencephalogram. In: Satapathy, S.C., Bhateja, V., Das, S. (eds.) Smart Intelligent Computing and Applications. SIST, vol. 104, pp. 625–635. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1921-1_61

    Chapter  Google Scholar 

  14. Albera, I., et al.: ICA-based EEG denoising: a comparative analysis of fifteen methods. Bull. Pol. Acad. Sci.: Tech. Sci. 60(3) (2012). https://doi.org/10.2478/v10175-012-0052-3

  15. Rafiammal, S.S., et al.: A low power and high performance hardware design for automatic epilepsy seizure detection. Int. J. Electron. Telecommun. 65(4), 707–712 (2019)

    Google Scholar 

  16. Gaidar, V., Sudakov, O.: Design of wearable EEG device for seizures early detection. Int. J. Electron. Telecommun. 67(2), 187–192 (2021)

    Google Scholar 

  17. Liu, L.: Recognition and analysis of motor imagery EEG signal based on improved BP neural network. IEEE Access 7, 47794–47803 (2019)

    Article  Google Scholar 

  18. Gandhi, T., et al.: Epilepsy diagnosis using combined duffing oscillator and PNN model. J. Bioinform. Intell. Control 1(1), 64–70 (2012)

    Google Scholar 

  19. Tabi, C.B.: Dynamical analysis of the FitzHugh-Nagumo oscillatons through a modified Van der Pol equation with fractional-order derivative term. Int. J. Non-Linear Mech. 105, 173–178 (2018)

    Google Scholar 

  20. Szuflitowska, B., Orlowski, P.: Statistical and physiologically analysis of using a Duffing-van der Pol oscillator to modeled ictal signals. In: Proceedings of the 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1137–1142 (2020). ieee.org/document/9305339

    Google Scholar 

  21. Szuflitowska, B., Orlowski, P.: Analysis of complex partial seizure using non-linear duffing van der pol oscillator model. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12745, pp. 433–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77970-2_33

    Chapter  Google Scholar 

  22. Obeid, I., Picone, J., Harabagiu, S.: Automatic discovery and processing of EEG cohorts from clinical records. In: Big Data to Knowledge All Hands Grantee Meeting, p. 1. Bethesda, Maryland, USA: National Institutes of Health (2016). https://pubmed.ncbi.nlm.nih.gov/24509598/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Szuflitowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szuflitowska, B., Orlowski, P. (2022). Analysis of Parameters Distribution of EEG Signals for Five Epileptic Seizure Phases Modeled by Duffing Van Der Pol Oscillator. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics