Skip to main content

Noninvasive Estimation of Mean Pulmonary Artery Pressure Using MRI, Computer Models, and Machine Learning

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Pulmonary Hypertension (PH) is a severe disease characterized by an elevated pulmonary artery pressure. The gold standard for PH diagnosis is measurement of mean Pulmonary Artery Pressure (mPAP) during an invasive Right Heart Catheterization. In this paper, we investigate noninvasive approach to PH detection utilizing Magnetic Resonance Imaging, Computer Models and Machine Learning. We show using the ablation study, that physics-informed feature engineering based on models of blood circulation increases the performance of Gradient Boosting Decision Trees-based algorithms for classification of PH and regression of values of mPAP. We compare results of regression (with thresholding of estimated mPAP) and classification and demonstrate that metrics achieved in both experiments are comparable. The predicted mPAP values are more informative to the physicians than the probability of PH returned by classification models. They provide the intuitive explanation of the outcome of the machine learning model (clinicians are accustomed to the mPAP metric, contrary to the PH probability).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dennis, A., et al.: Noninvasive diagnosis of pulmonary hypertension using heart sound analysis. Comput. Biol. Med. 40, 758–764 (2010). https://doi.org/10.1016/j.compbiomed.2010.07.003

    Article  Google Scholar 

  2. Elgendi, M., et al.: The voice of the heart: vowel-like sound in pulmonary artery hypertension. Diseases 6 (2018). https://doi.org/10.3390/diseases6020026. www.mdpi.com/journal/diseases

  3. Galie, N., et al.: Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS), endorsed by the international society of heart and lung transplantation (ISHLT). Eur. Heart J. 30(20), 2493–2537 (2009)

    Article  Google Scholar 

  4. Grant, B.J., Paradowski, L.J.: Characterization of pulmonary arterial input impedance with lumped parameter models. Am. J. Physiol.-Heart Circ. Physiol. 252, H585–H593 (1987). https://doi.org/10.1152/ajpheart.1987.252.3.H585

  5. Hoeper, M.M., Lee, S.H., Voswinckel, R., et al.: Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J. Am. Coll. Cardiol. 48(12), 2546–2552 (2006)

    Article  Google Scholar 

  6. Hoeper, M.M., et al.: Pulmonary hypertension. Dtsch Arztebl Int 114, 73–84 (2017). https://doi.org/10.3238/arztebl.2017.0073

    Article  Google Scholar 

  7. Huang, L., et al.: Prediction of pulmonary pressure after Glenn shunts by computed tomography-based machine learning models. Eur. Radiol. 30, 1369–1377 (2020). https://doi.org/10.1007/s00330-019-06502-3

  8. Hurdman, J., Condliffe, R., Elliot, C., Davies, C., Hill, C., et al.: Aspire registry: assessing the spectrum of pulmonary hypertension identified at a referral centre. Eur. Respir. J. 39, 945–955 (2012). https://doi.org/10.1183/09031936.00078411

  9. Jain, V., Bordes, S., Bhardwaj, A.: Physiology, Pulmonary Circulatory System. StatPearls Publishing (2021)

    Google Scholar 

  10. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017)

    Google Scholar 

  11. Kiely, D.G., et al.: Utilising artificial intelligence to determine patients at risk of a rare disease: idiopathic pulmonary arterial hypertension. Pulm. Circ. 9 (2019). https://doi.org/10.1177/2045894019890549

  12. Kusunose, K., Hirata, Y., Tsuji, T., Kotoku, J., Sata, M.: Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray. Sci. Rep. 10 (2020). https://doi.org/10.1038/S41598-020-76359-W

  13. Kwon, J.M., Kim, K.H., Inojosa, J.M., Jeon, K.H., Park, J., Oh, B.H.: Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. J. Heart Lung Transplant. 39, 805–814 (2020). https://doi.org/10.1016/j.healun.2020.04.009

  14. Leha, A., et al.: A machine learning approach for the prediction of pulmonary hypertension. PLoS ONE 14 (2019). https://doi.org/10.1371/journal.pone.0224453

  15. Lungu, A., Wild, J.M., Capener, D., Kiely, D.G., Swift, A.J., Hose, D.R.: MRI model-based non-invasive differential diagnosis in pulmonary hypertension. J. Biomech. 47, 2941–2947 (2014). https://doi.org/10.1016/j.jbiomech.2014.07.024

  16. Lungu, A., Swift, A.J., Capener, D., Kiely, D., Hose, R., Wild, J.M.: Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis. Pulm. Circ. 6, 181–190 (2016). https://doi.org/10.1086/686020

  17. Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numerica 26, 365–590 (2017). https://doi.org/10.1017/S0962492917000046

  18. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMedical Eng. OnLine 10, 33 (2011). https://doi.org/10.1186/1475-925X-10-33

  19. Simonneau, G., et al.: Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 53 (2019). https://doi.org/10.1183/13993003.01913-2018

  20. Slife, D.M., et al.: Pulmonary arterial compliance at rest and exercise in normal humans. Am. J. Physiol.-Heart Circ. Physiol. 258, H1823–H1828 (1990). https://doi.org/10.1152/ajpheart.1990.258.6.H1823

  21. Swift, A.J., Rajaram, S., Condliffe, R., et al.: Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the aspire registry. J. Cardiovasc. Magn. Reson. 14(1), 1–10 (2012)

    Article  Google Scholar 

  22. Vinayak, R.K., Gilad-Bachrach, R.: DART: dropouts meet multiple additive regression trees. In: Artificial Intelligence and Statistics, pp. 489–497. PMLR (2015)

    Google Scholar 

  23. Westerhof, N., Lankhaar, J.W., Westerhof, B.E.: The arterial Windkessel. Med. Biol. Eng. Comput. 47, 131–141 (2008). https://doi.org/10.1007/s11517-008-0359-2

  24. Wu, T.H., Pang, G.K.H., Kwong, E.W.Y.: Predicting systolic blood pressure using machine learning. In: 2014 7th International Conference on Information and Automation for Sustainability: “Sharpening the Future with Sustainable Technology”, ICIAfS 2014, March 2014. https://doi.org/10.1109/ICIAFS.2014.7069529

  25. Zhang, B., Ren, H., Huang, G., Cheng, Y., Hu, C.: Predicting blood pressure from physiological index data using the SVR algorithm. BMC Bioinform. 20 (2019). https://doi.org/10.1186/s12859-019-2667-y

  26. Zhu, F., Xu, D., Liu, Y., Lou, K., He, Z., et al.: Machine learning for the diagnosis of pulmonary hypertension. Kardiologiya 60, 96–101 (2020). https://doi.org/10.18087/cardio.2020.6.n953

  27. Zou, X.L., et al.: A promising approach for screening pulmonary hypertension based on frontal chest radiographs using deep learning: a retrospective study. PloS One 15(7) (2020). https://doi.org/10.1371/journal.pone.0236378

Download references

Acknowledgements

This publication is partly supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement Sano No. 857533 and the International Research Agendas programme of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund. This research was partly funded by Foundation for Polish Science (grant no POIR.04.04.00-00-14DE/18-00 carried out within the Team-Net program co-financed by the European Union under the European Regional Development Fund), National Science Centre, Poland (grant no 2020/39/B/ST6/01511). The authors have applied a CC BY license to any Author Accepted Manuscript (AAM) version arising from this submission, in accordance with the grants’ open access conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal K. Grzeszczyk .

Editor information

Editors and Affiliations

7Appendix

7Appendix

Acronyms used in Table 1 and their explanations: mPAP: mean pulmonary arterial pressure measured during RHC procedure, who: WHO functional PAH score [3], bsa: body surface area, \(R_{d}\): distal resistance calculated from 0D model, \(R_{c}\): proximal resistance, C: total pulmonary compliance, \(R_{tot}\): total resistance, \(W_{b}/W_{tot}\): backward pressure wave to the total wave power, rac_fiesta: pulmonary arterial relative area change from bSSFP MRI, systolic_area_fiesta: syst area of MPA from bSSFP, diast_area_fiesta: diastolic area of MPA from bSSFP, rvedv: right ventricle end diastolic volume, rvedv_index: rv end diastolic volume index, rvesv: rv end systolic volume, rvesv_index: rv end systolic volume index, rvef: right ventricle ejection fraction, rvsv: rv stroke volume, rvsv_index: rvsv index, lvedv: left ventricle end diastolic volume, lvedv_index: lvedv index, lvesv: lv end systolic volume, lvesv_index: lvesv index, lvef: lv ejection fraction, lvsv: lv stroke volume, lvsv_index: lvsv index, rv_dia_mass: rv diastolic mass, lv_dia_mass: lv diastolic mass, lv_syst_mass: lv systolic mass, rv_mass_index: rv diastolic mass index, lv_mass_index: lv diastolic mass index, sept_angle_syst: systolic septal angle, sept_angle_diast: diastolic septal angle, 4ch_la_area: left atrium area 4 chamber, 4ch_la_length: la length 4 chamber, 2ch_la_area: left atrium area 2 chamber, 2ch_la_length: la length 2 chamber, la_volume: la volume, la_volume_index: la volume index, ao_qflowpos: aortic positive flow, ao_qfp_ind: aortic positive flow index, pa_qflowpos: PA positive flow, pa_qflowneg: PA negative flow, pa_qfn_ind: PA negative flow index, systolic_area_pc: systolic MPA area from PC, diastolic_area_pc: diastolic MPA area from PC, rac_pc: relative area change of MPA from PC.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grzeszczyk, M.K. et al. (2022). Noninvasive Estimation of Mean Pulmonary Artery Pressure Using MRI, Computer Models, and Machine Learning. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics