Skip to main content

Data Allocation with Neural Similarity Estimation for Data-Intensive Computing

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13352))

Included in the following conference series:

  • 1298 Accesses

Abstract

Science collaborations such as ATLAS at the high-energy particle accelerator at CERN use a computer grid to run expensive computational tasks on massive, distributed data sets.

Dealing with big data on a grid demands workload management and data allocation to maintain a continuous workflow. Data allocation in a computer grid necessitates some data placement policy that is conditioned on the resources of the system and the usage of data.

In part, automatic and manual data policies shall achieve a short time-to-result. There are efforts to improve data policies. Data placement/allocation is vital to coping with the increasing amount of data processing in different data centers. A data allocation/placement policy decides which locations sub-sets of data are to be placed.

In this paper, a novel approach copes with the bottleneck related to wide-area file transfers between data centers and large distributed data sets with high dimensionality. The model estimates similar data with a neural network on sparse and uncertain observations and then proceeds with the allocation process. The allocation process comprises evolutionary data allocation for finding near-optimal solutions and improves over 5% on network transfers for the given data centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Ghaffar, K.A.S., Abbadi, A.E.: Optimal allocation of two-dimensional data (extended abstract). In: Afrati, F., Kolaitis, P. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 409–418. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62222-5_60

    Chapter  Google Scholar 

  2. Atallah, M.J., Prabhakar, S.: (almost) Optimal parallel block access to range queries. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 205–215. ACM (2000)

    Google Scholar 

  3. Atlas, C., et al.: Atlas computing: technical design report (2005)

    Google Scholar 

  4. Beermann, T., et al.: Methods of data popularity evaluation in the atlas experiment at the LHC. In: EPJ Web of Conferences (2021)

    Google Scholar 

  5. Bell, D.A.: Difficult data placement problems. Comput. J. 27(4), 315–320 (1984)

    Article  MathSciNet  Google Scholar 

  6. Berchtold, S., Böhm, C., Braunmüller, B., Keim, D.A., Kriegel, H.P.: Fast parallel similarity search in multimedia databases. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data. SIGMOD 1997, pp. 1–12. ACM, New York (1997). https://doi.org/10.1145/253260.253263

  7. Bonacorsi, D., et al.: Exploiting CMS data popularity to model the evolution of data management for run-2 and beyond. J. Phys. Conf. Ser. 664, 032003 (2015). IOP Publishing

    Google Scholar 

  8. Chang, R.S., Chang, H.P.: A dynamic data replication strategy using access-weights in data grids. J. Supercomput. 45(3), 277–295 (2008)

    Article  Google Scholar 

  9. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11(3) (2010)

    Google Scholar 

  10. Collaboration, A., et al.: The atlas experiment at the cern large hadron collider (2008)

    Google Scholar 

  11. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

    Article  Google Scholar 

  12. Guo, W., Wang, X.: A data placement strategy based on genetic algorithm in cloud computing platform. In: 2013 10th Web Information System and Application Conference (WISA), pp. 369–372. IEEE (2013)

    Google Scholar 

  13. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  14. Liu, Y., Liu, Z., Kettimuthu, R., Rao, N., Chen, Z., Foster, I.: Data transfer between scientific facilities-bottleneck analysis, insights and optimizations. In: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 122–131. IEEE (2019)

    Google Scholar 

  15. Megino, F.B., et al.: Implementing data placement strategies for the CMS experiment based on a popularity model. J. Phys. Conf. Ser. 396, 032047 (2012). IOP Publishing

    Google Scholar 

  16. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition (2015)

    Google Scholar 

  17. Ram, S., Marsten, R.E.: A model for database allocation incorporating a concurrency control mechanism. IEEE Trans. Knowl. Data Eng. 3(3), 389–395 (1991)

    Article  Google Scholar 

  18. Sato, H., Matsuoka, S., Endo, T.: File clustering based replication algorithm in a grid environment. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 204–211. IEEE Computer Society (2009)

    Google Scholar 

  19. Sato, H., Matsuoka, S., Endo, T., Maruyama, N.: Access-pattern and bandwidth aware file replication algorithm in a grid environment. In: Proceedings of the 2008 9th IEEE/ACM International Conference on Grid Computing, pp. 250–257. IEEE Computer Society (2008)

    Google Scholar 

  20. Spiga, D., Giordano, D., Barreiro Megino, F.H.: Optimizing the usage of multi-petabyte storage resources for LHC experiments. In: Proceedings of the EGI Community Forum 2012/EMI Second Technical Conference (EGICF12-EMITC2), 26–30 March 2012. Munich, Germany (2012). https://pos.sissa.it/162/107/

  21. Vamosi, R., Lassnig, M., Schikuta, E.: Data allocation service ADAS for the data rebalancing of atlas. In: EPJ Web of Conferences, vol. 214, p. 06012. EDP Sciences (2019)

    Google Scholar 

  22. Wang, J.Y., Jea, K.F.: A near-optimal database allocation for reducing the average waiting time in the grid computing environment. Inf. Sci. 179(21), 3772–3790 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)

    Google Scholar 

  24. Weinberger, K.Q., Sha, F., Saul, L.K.: Convex optimizations for distance metric learning and pattern classification [applications corner]. IEEE Sig. Process. Mag. 27(3), 146–158 (2010)

    Article  Google Scholar 

  25. Yuan, D., Yang, Y., Liu, X., Chen, J.: A data placement strategy in scientific cloud workflows. Futur. Gener. Comput. Syst. 26(8), 1200–1214 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Schikuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vamosi, R., Schikuta, E. (2022). Data Allocation with Neural Similarity Estimation for Data-Intensive Computing. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics