Skip to main content

Scheduling with Multiple Dispatch Rules: A Quantum Computing Approach

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13353))

Included in the following conference series:

Abstract

Updating the set of Multiple Dispatch Rules (MDRs) for scheduling of machines in a Flexible Manufacturing System (FMS) is computationally intensive. It becomes a major bottleneck when these rules have to be updated in real-time in response to changes in the manufacturing environment. Machine Learning (ML) based solutions for this problem are considered to be state-of-the-art. However, their accuracy and correctness depend on the availability of high-quality training data. To address the shortcomings of the ML-based approaches, we propose a novel Quadratic Unconstrained Binary Optimization (QUBO) formulation for the MDR scheduling problem. A novel aspect of our formulation is that it can be efficiently solved on a quantum annealer. We solve the proposed formulation on a production quantum annealer from D-Wave and compare the results with single dispatch rule based baseline model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D-Wave. https://docs.dwavesys.com/docs/latest/handbook_hybrid.html

  2. Denkena, B., Schinkel, F., Pirnay, J., Wilmsmeier, S.: Quantum algorithms for process parallel flexible job shop scheduling. CIRP J. Manuf. Sci. Technol. 33, 100–114 (2021)

    Article  Google Scholar 

  3. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MathSciNet  Google Scholar 

  4. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using QUBO models (2019)

    Google Scholar 

  5. Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12(2), 34 (2019)

    Article  MathSciNet  Google Scholar 

  6. Jun, S., Lee, S., Chun, H.: Learning dispatching rules using random forest in flexible job shop scheduling problems. Int. J. Prod. Res. 57(10), 3290–3310 (2019)

    Article  Google Scholar 

  7. Kundakcı, N., Kulak, O.: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput. Ind. Eng. 96, 31–51 (2016)

    Article  Google Scholar 

  8. Kurowski, K., Wȩglarz, J., Subocz, M., Różycki, R., Waligóra, G.: Hybrid quantum annealing heuristic method for solving job shop scheduling problem. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 502–515. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_39

    Chapter  Google Scholar 

  9. Luo, S.: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 91, 106208 (2020)

    Article  Google Scholar 

  10. Montazeri, M., Van Wassenhove, L.: Analysis of scheduling rules for an FMS. Int. J. Prod. Res. 28(4), 785–802 (1990)

    Article  Google Scholar 

  11. Priore, P., Gomez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: an updated review. Ai Edam 28(1), 83–97 (2014)

    Google Scholar 

  12. Samsonov, V., et al.: Manufacturing control in job shop environments with reinforcement learning. In: ICAART, vol. 2, pp. 589–597 (2021)

    Google Scholar 

  13. Santoro, G.E., Tosatti, E.: Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A Math. Gen. 39(36), R393 (2006)

    Article  MathSciNet  Google Scholar 

  14. Shiue, Y.R., Lee, K.C., Su, C.T.: Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind. Eng. 125, 604–614 (2018)

    Article  Google Scholar 

  15. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch for job shop scheduling via deep reinforcement learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1621–1632. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poojith U. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rao, P.U., Sodhi, B. (2022). Scheduling with Multiple Dispatch Rules: A Quantum Computing Approach. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics