Skip to main content

Adaptive Deep Learning Approximation for Allen-Cahn Equation

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

Solving general non-linear partial differential equations (PDE) precisely and efficiently has been a long-lasting challenge in the field of scientific computing. Based on the deep learning framework for solving non-linear PDEs physics-informed neural networks (PINN), we introduce an adaptive collocation strategy into the PINN method to improve the effectiveness and robustness of this algorithm when selecting the initial data to be trained. Instead of merely training the neural network once, multi-step discrete time models are considered when predicting the long time behaviour of solutions of the Allen-Cahn equation. Numerical results concerning solutions of the Allen-Cahn equation are presented, which demonstrate that this approach can improve the robustness of original neural networks approximation.

J. Chen—This work is partially supported by Key Program Special Fund in XJTLU (KSF-E-50, KSF-E-21) and XJTLU Research Development Funding (RDF-19-01-15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T.: Artificial neural network methods for the solution of second order boundary value problems. Comput. Mater. Continua 59(1), 345–359 (2019). https://doi.org/10.32604/cmc.2019.06641

  3. Bartels, S., Mller, R., Ortner, C.: Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal. 49(1), 110–134 (2011)

    Article  MathSciNet  Google Scholar 

  4. Beck, C.E.W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29(4), 1563–1619 (2019). https://doi.org/10.1007/s00332-018-9525-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Oxford (2014)

    Google Scholar 

  6. Yu, B.: The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. CoRR abs/1710.00211 (2017). http://arxiv.org/abs/1710.00211

  7. Feng, X., Wu, H.J.: A posteriori error estimates and an adaptive finite element method for the Allenccahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005)

    Article  MathSciNet  Google Scholar 

  8. Gobovic, D., Zaghloul, M.E.: Analog cellular neural network with application to partial differential equations with variable mesh-size. In: Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS 1994. vol. 6, pp. 359–362 (1994). https://doi.org/10.1109/ISCAS.1994.409600

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  10. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics, 2nd edn. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511995569

  11. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations. CoRR abs/1711.10561 (2017). http://arxiv.org/abs/1711.10561

  12. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Continuous Dyn. Syst. 28, 1669–1691 (2010). https://doi.org/10.3934/dcds.2010.28.1669

    Article  MathSciNet  MATH  Google Scholar 

  13. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  Google Scholar 

  14. Suzuki, Y.: Neural network-based discretization of nonlinear differential equations. Neural Comput. Appl. 31(7), 3023–3038 (2017). https://doi.org/10.1007/s00521-017-3249-4

    Article  Google Scholar 

  15. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys. 411, 109409 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Chen, J., Ma, F. (2022). Adaptive Deep Learning Approximation for Allen-Cahn Equation. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics