Skip to main content

DNS of Mass Transfer in Bi-dispersed Bubble Swarms

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Abstract

This work presents Direct Numerical Simulation of mass transfer in a bi-dispersed bubble swarm at high Reynolds number, by using a multiple marker level-set method. Transport equations are discretized by the finite-volume method on 3D collocated unstructured meshes. Interface capturing is performed by the unstructured conservative level-set method, whereas the multiple marker approach avoids the so-called numerical coalescence of bubbles. Pressure-velocity coupling is solved by the classical fractional-step projection method. Diffusive terms are discretized by a central difference scheme. Convective term of momentum equation, level-set equations, and mass transfer equation, are discretized by unstructured flux-limiters schemes. This approach improves the numerical stability of the unstructured multiphase solver in bubbly flows with high Reynolds number and high-density ratio. Finally, this numerical model is applied to research the effect of bubble-bubble interactions on the mass transfer in a bi-dispersed bubble swarm.

Néstor Balcázar, as a Professor Serra-Húnter (UPC-LE8027), acknowledges the Catalan Government for the financial support through this programme. The authors acknowledges the financial support of the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (MINECO), Spain (PID2020-115837RB-100). Simulations were executed using computing time granted by the RES (IM-2021-3-0013, IM-2021-2-0020, IM-2021-1-0013, IM-2020-2-0002, IM-2019-3-0015) on the supercomputer MareNostrum IV based in Barcelona, Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboulhasanzadeh, B., Thomas, S., Taeibi-Rahni, M., Tryggvason, G.: Multiscale computations of mass transfer from buoyant bubbles. Chem. Eng. Sci. 75, 456–467 (2012)

    Article  Google Scholar 

  2. Alke, A., Bothe, D., Kroeger, M., Warnecke, H.J.: VOF-based simulation of conjugate mass transfer from freely moving fluid particles. In: Mammoli, A.A., Brebbia, C.A. (eds.) Computational Methods in Multiphase Flow V, WIT Transactions on Engineering Sciences, pp. 157–168 (2009)

    Google Scholar 

  3. Balcázar, N., Jofre, L., Lehmkhul, O., Castro, J., Rigola, J.: A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int. J. Multiphase Flow 64, 55–72 (2014)

    Article  MathSciNet  Google Scholar 

  4. Balcázar, N., Lehmkhul, O., Rigola, J., Oliva, A.: A multiple marker level-set method for simulation of deformable fluid particles. Int. J. Multiphase Flow 74, 125–142 (2015)

    Article  MathSciNet  Google Scholar 

  5. Balcázar, N., Lemhkuhl, O., Jofre, L., Oliva, A.: Level-set simulations of buoyancy-driven motion of single and multiple bubbles. Int. J. Heat Fluid Flow 56, 91–107 (2015)

    Article  Google Scholar 

  6. Balcázar, N., Lehmkhul, O., Jofre, L., Rigola, J., Oliva, A.: A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes. Comput. Fluids 124, 12–29 (2016)

    Article  MathSciNet  Google Scholar 

  7. Balcázar, N., Rigola, J., Castro, J., Oliva, A.: A level-set model for thermocapillary motion of deformable fluid particles. Int. J. Heat Fluid Flow Part B 62, 324–343 (2016)

    Article  Google Scholar 

  8. Balcázar, N., Castro, J., Rigola, J., Oliva, A.: DNS of the wall effect on the motion of bubble swarms. Procedia Comput. Sci. 108, 2008–2017 (2017)

    Article  Google Scholar 

  9. Balcázar, N., Castro, J., Chiva, J., Oliva, A.: DNS of falling droplets in a vertical channel. Int. J. Comput. Methods Exp. Meas. 6(2), 398–410 (2018)

    MATH  Google Scholar 

  10. Balcázar, N., Antepara, O., Rigola, J., Oliva, A.: A level-set model for mass transfer in bubbly flows. Int. J. Heat Mass Transf. 138, 335–356 (2019)

    Article  Google Scholar 

  11. Balcázar, N., Lehmkuhl, O., Castro, J., Oliva, A.: DNS of the rising motion of a swarm of bubbles in a confined vertical channel. In: Grigoriadis, D.G.E., Geurts, B.J., Kuerten, H., Fröhlich, J., Armenio, V. (eds.) Direct and Large-Eddy Simulation X. ES, vol. 24, pp. 125–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63212-4_15

    Chapter  Google Scholar 

  12. Balcázar, N., Antepara, O., Rigola, J., Oliva, A.: DNS of drag-force and reactive mass transfer in gravity-driven bubbly flows. In: García-Villalba, M., Kuerten, H., Salvetti, M.V. (eds.) DLES 2019. ES, vol. 27, pp. 119–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42822-8_16

    Chapter  Google Scholar 

  13. Balcazar, N., Rigola, J., Oliva, A.: Unstructured level-set method for saturated liquid-vapor phase change. In: WCCM-ECCOMAS2020 (2021). https://www.scipedia.com/public/Balcazar_et_al_2021a, https://doi.org/10.23967/wccm-eccomas.2020.352

  14. Balcázar-Arciniega, N., Rigola, J., Oliva, A.: DNS of mass transfer from bubbles rising in a vertical channel. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11539, pp. 596–610. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22747-0_45

    Chapter  Google Scholar 

  15. Bothe, D., Koebe, M., Wielage, K., Warnecke, H.J.: VOF simulations of mass transfer from single bubbles and bubble chains rising in the aqueous solutions. In: Proceedings of FEDSM03: Fourth ASME-JSME Joint Fluids Engineering Conference, Honolulu, 6–11 July 2003

    Google Scholar 

  16. Bothe, D., Fleckenstein, S.: Modeling and VOF-based numerical simulation of mass transfer processes at fluidic particles. Chem. Eng. Sci. 101, 283–302 (2013)

    Article  Google Scholar 

  17. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  18. Clift, R., Grace, J.R., Weber, M.E.: Bubbles. Drops and Particles. Academin Press, New York (1978)

    Google Scholar 

  19. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  20. Coyajee, E., Boersma, B.J.: Numerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing method. J. Comput. Phys. 228(12), 4444–4467 (2009)

    Article  Google Scholar 

  21. Darmana, D., Deen, N.G., Kuipers, J.A.M.: Detailed 3D modeling of mass transfer processes in two-phase flows with dynamic interfaces. Chem. Eng. Technol. 29(9), 1027–1033 (2006)

    Article  Google Scholar 

  22. Davidson, M.R., Rudman, M.: Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow. Numer. Heat Transf. Part B Fundam. 41, 291–308 (2002)

    Article  Google Scholar 

  23. Esmaeeli, A., Tryggvason, G.: Direct numerical simulations of bubbly flows Part 2. Moderate Reynolds number arrays. J. Fluid Mech. 385, 325–358 (1999)

    Article  Google Scholar 

  24. Gaskell, P.H., Lau, A.K.C.: Curvature-compensated convective transport: SMART a new boundedness-preserving transport algorithm. Int. J. Numer. Methods 8, 617–641 (1988)

    Article  MathSciNet  Google Scholar 

  25. Gottlieb, S., Shu, C.W.: Total Variation Dimishing Runge-Kutta Schemes. Math. Comput. 67, 73–85 (1998)

    Article  Google Scholar 

  26. Gutiérrez, E., Balcázar, N., Bartrons, E., Rigola, J.: Numerical study of Taylor bubbles rising in a stagnant liquid using a level-set/moving-mesh method. Chem. Eng. Sci. 164, 102–117 (2017)

    Article  Google Scholar 

  27. Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundary. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  28. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7985-8

    Book  MATH  Google Scholar 

  29. Jasak, H., Weller, H.G.: Application of the finite volume method and unstructured meshes to linear elasticity. Int. J. Numer. Meth. Eng. 48, 267–287 (2000)

    Article  Google Scholar 

  30. Koynov, A., Khinast, J.G., Tryggvason, G.: Mass transfer and chemical reactions in bubble swarms with dynamic interfaces. AIChE J. 51(10), 2786–2800 (2005)

    Article  Google Scholar 

  31. Lochiel, A., Calderbank, P.: Mass transfer in the continuous phase around axisymmetric bodies of revolution. Chem. Eng. Sci. 19, 471–484 (1964)

    Article  Google Scholar 

  32. Mavriplis, D.J.: Unstructured mesh discretizations and solvers for computational aerodynamics. In: 18th Computational Fluid Dynamics Conference, AIAA Paper, pp. 2007–3955, Miami (2007). https://doi.org/10.2514/6.2007-3955

  33. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)

    Article  MathSciNet  Google Scholar 

  34. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 175–210 (1988)

    Article  MathSciNet  Google Scholar 

  35. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  Google Scholar 

  36. Roghair, I., Van Sint Annaland, M., Kuipers, J.A.M.: An improved front-tracking technique for the simulation of mass transfer in dense bubbly flows. Chem. Eng. Sci. 152, 351–369 (2016)

    Article  Google Scholar 

  37. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 144, 146–159 (1994)

    Article  Google Scholar 

  38. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MathSciNet  Google Scholar 

  39. Sun, D.L., Tao, J.W.Q.: A coupled volume-of-fluid and level-set (VOSET) method for computing incompressible two-phase flows. Int. J. Heat Mass Transf. 53, 645–655 (2010)

    Article  Google Scholar 

  40. Sweby, P.K.: High resolution using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  Google Scholar 

  41. Tryggvason, G., et al.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)

    Article  MathSciNet  Google Scholar 

  42. Winnikow, S.: Letter to the editors. Chem. Eng. Sci. 22(3), 477 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor Balcázar-Arciniega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balcázar-Arciniega, N., Rigola, J., Oliva, A. (2022). DNS of Mass Transfer in Bi-dispersed Bubble Swarms. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics