Skip to main content

Quantum-Classical Solution Methods for Binary Compressive Sensing Problems

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13353))

Included in the following conference series:

Abstract

Compressive sensing is a signal processing technique used to acquire and reconstruct sparse signals using significantly fewer measurement samples. Compressive sensing requires finding the most sparse solution to an underdetermined linear system, which is an NP-hard problem and as a consequence in practise is only solved approximately. In our work we restrict ourselves to the compressive sensing problem for the case of binary signals. For that case we have defined an equivalent formulation in terms of a quadratic binary optimisation (QUBO) problem, which we solve using classical and (hybrid-)quantum computing solving techniques based on quantum annealing. Phase transition diagrams show that this approach significantly improves the number of problem types that can be successfully reconstructed when compared to a more conventional \(\mathcal {L}_1\) optimisation method. A challenge that remain is how to select optimal penalty parameters in the QUBO formulation as was shown can heavily impact the quality of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.gurobi.com/products/gurobi-optimizer/.

  2. 2.

    https://github.com/dwavesystems/qbsolv/.

References

  1. D-Wave Ocean Software Documentation. https://docs.ocean.dwavesys.com/en/stable/. Accessed 11 Dec 2021

  2. D-Wave Ocean Software Documentation: Simulated Annealing Sampler. https://docs.ocean.dwavesys.com/en/stable/docs_neal/reference/sampler.html. Accessed 08 Jun 2022

  3. D-Wave Problem Solving Handbook: Using Hybrid Solvers. https://docs.dwavesys.com/docs/latest/handbook_hybrid.html

  4. D-Wave System online documentation: QPU-specific characteristics. https://docs.dwavesys.com/docs/latest/handbook_qpu.html. Accessed 08 Jun 2022

  5. D-Wave System online documentation: what is quantum annealing? https://docs.dwavesys.com/docs/latest/c_gs_2.html#getting-started-qa. Accessed 14 Jan 2022

  6. State of Mathematical Optimization Report. Technical report, Gurobi Optimization (2021)

    Google Scholar 

  7. Anitori, L.: Compressive sensing and fast simulations, applications to radar detection. Ph.D. thesis, TU Delft (2012)

    Google Scholar 

  8. Ayanzadeh, R., Halem, M., Finin, T.: An ensemble approach for compressive sensing with quantum. arXiv e-prints arXiv:2006.04682, June 2020

  9. Ayanzadeh, R., Mousavi, S., Halem, M., Finin, T.: Quantum annealing based binary compressive sensing with matrix uncertainty. arXiv e-prints arXiv:1901.00088, December 2018

  10. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  11. Bontekoe, T.H., Neumann, N.M.P., Phillipson, F., Wezeman, R.S.: Quantum computing for radar and sonar information processing (2021, unpublished)

    Google Scholar 

  12. Booth, M., Reinhardt, S.P., Roy, A.: Partitioning optimization problems for hybrid classical/quantum execution. Technical report, D-Wave: The Quantum Computing Company, October 2018

    Google Scholar 

  13. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  14. Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969–985 (2007)

    Article  MathSciNet  Google Scholar 

  15. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2005)

    Article  MathSciNet  Google Scholar 

  16. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  17. Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Program. 50(1–3), 367–393 (1991)

    Article  MathSciNet  Google Scholar 

  18. Donoho, D., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)

    Article  MathSciNet  Google Scholar 

  19. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  20. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000)

  21. Hayashi, K., Nagahara, M., Tanaka, T.: A user’s guide to compressed sensing for communications systems. IEICE Trans. Commun. E96.B(3), 685–712 (2013)

    Google Scholar 

  22. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)

    Article  Google Scholar 

  23. Maleki, A., Donoho, D.L.: Optimally tuned iterative reconstruction algorithms for compressed sensing. IEEE J. Sel. Top. Signal Process. 4(2), 330–341 (2010)

    Article  Google Scholar 

  24. McGeoch, C., Farré, P.: The Advantage System: Performance Update. Technical report, D-Wave: The Quantum Computing Company, October 2021

    Google Scholar 

  25. McGeoch, C., Farré, P., Bernoudy, W.: D-Wave Hybrid Solver Service + Advantage: Technology Update. Technical report, D-Wave: The Quantum Computing Company, September 2020

    Google Scholar 

  26. Rani, M., Dhok, S.B., Deshmukh, R.B.: A systematic review of compressive sensing: concepts, implementations and applications. IEEE Access 6, 4875–4894 (2018)

    Article  Google Scholar 

  27. Romanov, E., Ordentlich, O.: On compressed sensing of binary signals for the unsourced random access channel. Entropy 23(5), 605 (2021)

    Article  MathSciNet  Google Scholar 

  28. Shannon, C.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  29. Shirvanimoghaddam, M., Li, Y., Vucetic, B., Yuan, J., Zhang, P.: Binary compressive sensing via analog fountain coding. IEEE Trans. Signal Process. 63(24), 6540–6552 (2015)

    Article  MathSciNet  Google Scholar 

  30. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(6), 948–958 (2010)

    Article  Google Scholar 

  31. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\cal{L}_{1}\)-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Y.: User’s Guide for YALL1: Your ALgorithms for L1 Optimization. Technical report, Rice University, Houston, Texas (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Ministry of Defense under Grant V2104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Wezeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wezeman, R.S., Chiscop, I., Anitori, L., van Rossum, W. (2022). Quantum-Classical Solution Methods for Binary Compressive Sensing Problems. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics