Abstract
Understanding human emotions has become a popular research and practical topic in recent years. There are many research works that have good results on detecting human emotions from facial expressions, speech and text. Recognizing emotions from body posture or movement is an emerging area of research, and it has shown progressive results. This brief survey presents an overview of recent research in this field. The relationship between emotions and body movements is discussed. The factors that affect this relation are presented. Based on recent advanced research, an integrated and comprehensive process for the automatic detection of emotions based on body movements is introduced. Each component of this process is considered. In particular, body movement models, their evaluation, and available datasets are examined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schindler, K., Van Gool, L., De Gelder, B.: Recognizing emotions expressed by body pose: a biologically inspired neural model. Neural Netw. 21, 1238–1246 (2008)
Elman, J.L.: Encyclopedia of Language and Linguistics, 2nd edn. Elsevier, Oxford (2005)
De Silva, P., Bianchi-Berthouze, N.: Modeling human affective postures: an information theoretic characterization of posture features. Comput. Anim. Virtual Worlds 15, 269–276 (2004)
Thanh Nguyen, D., Li, W., Ogunbona, P.: Human detection from images and videos: a survey. Pattern Recogn. 51, 148–175 (2016)
Kachouane, M., Sahki, S., Lakrouf, M., Ouadah, N.: Hog based fast human detection. In: 24th International Conference on Microelectronics (ICM), pp. 1–4 (2012)
Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European Conference on Computer Vision, pp. 428–441 (2006)
Noroozi, F., Adrian Corneanu, C., Kamińska, D., Sapiński, T., Escalera, S., Anbarjafari, G.: Survey on emotional body gesture recognition. IEEE Trans. Affect. Comput. 12, 505–523 (2018)
Ansari, M., Kumar Singh, D.: Human detection techniques for real time surveillance: a comprehensive survey. Multimedia Tools Appl. 80, 8759–8808 (2021)
Chen, Y., Tian, Y., He, M.: Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Underst. 192, 102897 (2020)
Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)
Charles, J., Pfister, T., Magee, D., Hogg, D., Zisserman, A.: Personalizing human video pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3063–3072 (2016)
Pishchulin, L., et al.: Deepcut: joint subset partition and labeling for multi person pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4929–4937 (2016)
Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8387–8397 (2018)
Crane, E., Gross, M.: Motion capture and emotion: affect detection in whole body movement. In: International Conference on Affective Computing and Intelligent Interaction, pp. 95–101 (2007)
Gunes, H., Piccardi, M.: Affect recognition from face and body: early fusion vs. late fusion. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3437–3443 (2005)
Maret, Y., Oberson, D., Gavrilova, M.: Identifying an emotional state from body movements using genetic-based algorithms. In: International Conference on Artificial Intelligence and Soft Computing, pp. 474–485 (2018)
Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A., Manocha, D.: Identifying emotions from walking using affective and deep features. arXiv preprintarXiv:1906.11884 (2019)
Ferdous, A., Hossain, B.A.S.M., Marina, G.: Emotion recognition from body movement. IEEE Access 8, 11761–11781 (2019)
Karg, M., Kühnlenz, K., Buss, M.: Recognition of affect based on gait patterns. IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) 40, 1050–1061 (2010)
Kapur, A., Kapur, A., Virji-Babul, N., Tzanetakis, G., Driessen, P.: Gesture-based affective computing on motion capture data. In: International Conference on Affective Computing and Intelligent Interaction, pp. 1–7 (2005)
Sapiński, T., Kamińska, D., Pelikant, A., Anbarjafari, G.: Emotion recognition from skeletal movement. Entropy 21, 646 (2019)
Kaza, K., et al.: Body motion analysis for emotion recognition in serious games. In: International Conference on Universal Access in Human-Computer Interaction, pp. 33–42 (2016)
Coulson, M.: Attributing emotion to static body postures: recognition accuracy, confusions, and viewpoint dependence. Nonverbal Behav. 28, 117–139 (2004)
Posner, J., Russell, J., Peterson, B.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–734 (2005)
Bernhardt, D.: Emotion inference from human body motion. Technical report, University of Cambridge, Computer Laboratory (2010)
Viegas, C.: Two stage emotion recognition using frame-level and video-level features. In: 15th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 912–915 (2020)
Alghowinem, S., Goecke, R., Cohn, J., Wagner, M., Parker, G., Breakspear, M.: Cross-cultural detection of depression from nonverbal behaviour. In: 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, vol. 1, pp. 1–8 (2015)
Shi, J., Liu, C., Toshinori Ishi, C., Ishiguro, H.: Skeleton-based emotion recognition based on two-stream self-attention enhanced spatial-temporal graph convolutional network. Sensors 21, 205 (2021)
Arunnehru, J., Geetha, K.: Automatic human emotion recognition in surveillance video. In: Intelligent Techniques in Signal Processing for Multimedia Security, pp. 321–342 (2017)
Sebastian-Kaltwang, M., Romera-Paredes, B., Martinez, B., Singh, A., Cella, M., Valstar, M.: The automatic detection of chronic pain-related expression: requirements, challenges and the multimodal emopain dataset. IEEE Trans. Affect. Comput. 7, 435–451 (2015)
Wang, W., Enescu, V., Sahli, H.: Adaptive real-time emotion recognition from body movements. ACM Trans. Interact. Intell. Syst. 5, 1–21 (2015)
Ahmed, F., Sieu, B., Gavrilova, M.: Score and rank-level fusion for emotion recognition using genetic algorithm. In: IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing, pp. 46–53 (2018)
Wei, G., Jian, L., Mo, S.: Multimodal (audio, facial and gesture) based emotion recognition challenge. In: 15th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 908–911 (2020)
Yuan, X., Mahmoud, M.: Alanet: autoencoder-lstm for pain and protective behaviour detection. In: 15th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 824–828 (2020)
Egede, J., et al.: Emopain challenge 2020: multimodal pain evaluation from facial and bodily expressions. In: 15th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 849–856 (2020)
Gunes, H., Piccard, M.: A bimodal face and body gesture database for automatic analysis of human nonverbal affective behavior. In: 18th IEEE International Conference on Pattern Recognition, vol. 1, pp. 1148–115 (2006)
Douglas-Cowie, E., et al.:‘The humaine database. Emotion-Oriented Systems, pp. 243–284 (2011)
Baveye, Y., Dellandrea, E., Chamaret, C., Chen, L.: Liris-accede: a video database for affective content analysis. IEEE Trans. Affect. Comput. 6, 43–55 (2015)
Bänziger, T., Mortillaro, M., Scherer, K.: Introducing the Geneva multimodal expression corpus for experimental research on emotion perception. Emotion 12, 1161 (2012)
Fourati, N., Pelachaud, C.: Emilya: emotional body expression in daily actions database. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation, pp. 3486–3493 (2014)
Ma, Y., Paterson, H., Pollick, F.: A motion capture library for the study of identity, gender, and emotion perception from biological motion. Behav. Res. Methods 38, 134–141 (2006)
Kleinsmith, A., De Silva, R., Bianchi-Berthouze, N.: Cross-cultural differences in recognizing affect from body posture. Interact. Comput. 18, 1371–1389 (2006)
Emotional Body Motion Database. http://ebmdb.tuebingen.mpg.de/
Barros, P., Churamani, N., Lakomkin, E., Siqueira, H., Sutherland, A., Wermter, S.: The omg-emotion behavior dataset. IEEE International Joint Conference on Neural Networks, pp. 1–7 (2018)
Keefe, B., Villing, M., Racey, C., Strong, S., Wincenciak, J., Barraclough, N.: A database of whole-body action videos for the study of action, emotion, and untrustworthiness. Behav. Res. Methods 46, 1042–1051 (2014)
De Gelder, B., Van den Stock, J.: The bodily expressive action stimulus test (beast). Construction and validation of a stimulus basis for measuring perception of whole body expression of emotions. Front. Psychol. 2, 181 (2011)
Sapiński, T., Kamińska, D., Pelikant, A., Ozcinar, C., Avots, E., Anbarjafari, G.: Multimodal database of emotional speech, video and gestures. In: International Conference on Pattern Recognition, pp. 153–163 (2018)
Busso, C., Bulut, M., Lee, C., Kazemzadeh, A., Mower, E., Kim, S., Chang, J., Lee, S., Narayanan, S.: Iemocap: interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42, 335–359 (2008)
Volkova, E., De La Rosa, S., Bülthoff, H., Mohler, B.: The MPI emotional body expressions database for narrative scenarios. PLoS ONE 9, e113647 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ebdali Takalloo, L., Li, K.F., Takano, K. (2022). An Overview of Emotion Recognition from Body Movement. In: Barolli, L. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2022. Lecture Notes in Networks and Systems, vol 497. Springer, Cham. https://doi.org/10.1007/978-3-031-08812-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-08812-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08811-7
Online ISBN: 978-3-031-08812-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)