Skip to main content

A Fuzzy-Based System for Handover in 5G Wireless Networks Considering Network Slicing Constraints

  • Conference paper
  • First Online:
Complex, Intelligent and Software Intensive Systems (CISIS 2022)

Abstract

Handover in 5G Wireless Networks introduces new and complex challenges, because a user does not handover to different base stations or access technologies but also different slices. The constraints on Network Slicing (NS) should be considered when making a handover decision for satisfying user requirements. In this paper, we propose a Fuzzy-based system for Handover considering three parameters: Slice Delay (SD), Slice Bandwidth (SB) and Slice Stability (SS). From simulation results, we conclude that the considered parameters have different effects on the Handover Decision (HD). When SD is increased, the HD parameter is increased but when SB and SS are increasing, the HD parameter is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.J., Lopez-Soler, J.M.: A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 22(2), 905–929 (2020)

    Article  Google Scholar 

  2. Sun, Y., et al.: Efficient handover mechanism for radio access network slicing by exploiting distributed learning. IEEE Trans. Netw. Serv. Manag. 17(4), 2620–2633 (2020)

    Article  Google Scholar 

  3. Saad, W.K., Shayea, I., Hamza, B.J., Mohamad, H., Daradkeh, Y.I., Jabbar, W.A.:Handover parameters optimisation techniques in 5G networks. Sensors 21(15), 5202, 22 (2021). https://doi.org/10.3390/s21155202

  4. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)

    Article  Google Scholar 

  5. Palmieri, F.: A reliability and latency-aware routing framework for 5g transport infrastructures. Comput. Netw. 179(9), October 2020. https://doi.org/10.1016/j.comnet.2020.107365. Article 107365

  6. Kamil, I.A., Ogundoyin, S.O.: Lightweight privacy-preserving power injection and communication over vehicular networks and 5g smart grid slice with provable security. Internet Things 8(100116), 100–116 (2019)

    Google Scholar 

  7. Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 18(3), 11–21 (2015)

    Article  Google Scholar 

  8. Yao, D., Su, X., Liu, B., Zeng, J.: A mobile handover mechanism based on fuzzy logic and MPTCP protocol under SDN architecture*. In: 18th International Symposium on Communications and Information Technologies (ISCIT-2018), pp. 141–146, September 2018

    Google Scholar 

  9. Lee, J., Yoo, Y.: Handover cell selection using user mobility information in a 5G SDN-based network. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN-2017), pp. 697–702, July 2017

    Google Scholar 

  10. Moravejosharieh, A., Ahmadi, K., Ahmad, S.: A fuzzy logic approach to increase quality of service in software defined networking. In: 2018 International Conference on Advances in Computing,Communication Control and Networking (ICACCCN-2018), pp. 68–73, October 2018

    Google Scholar 

  11. Li, L.E., Mao, Z.M., Rexford, J.: Toward software-defined cellular networks. In: 2012 European Workshop on Software Defined Networking, pp. 7–12, October 2012

    Google Scholar 

  12. Mousa, M., Bahaa-Eldin, A.M., Sobh, M.: Software defined networking concepts and challenges. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES-2016), pp. 79–90. IEEE (2016)

    Google Scholar 

  13. An, N., Kim, Y., Park, J., Kwon, D.H., Lim, H.: Slice management for quality of service differentiation in wireless network slicing. Sensors 19, 2745 (2019)

    Google Scholar 

  14. Jiang, M., Condoluci, M., Mahmoodi, T.: Network slicing management & prioritization in 5G mobile systems. In: European Wireless 2016; 22th European Wireless Conference, pp. 1–6. VDE (2016)

    Google Scholar 

  15. Chen, J., et al.: Realizing dynamic network slice resource management based on SDN networks. In:2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA), pp. 120–125 (2019)

    Google Scholar 

  16. Li, X., et al.: Network slicing for 5G: challenges and opportunities. IEEE Internet Comput. 21(5), 20–27 (2017)

    Article  Google Scholar 

  17. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018)

    Article  Google Scholar 

  18. Alliance, N.: Description of network slicing concept. NGMN 5G P 1, 7 (2016). https://ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf

  19. Norp, T.: 5G requirements and key performance indicators. J. ICT Stand. 6(1), 15–30 (2018)

    Google Scholar 

  20. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency towards 5G: ran, core network and caching solutions. IEEE Commun. Surv. Tutor. 20(4), 3098–3130 (2018)

    Article  Google Scholar 

  21. Kim, Y., Park, J., Kwon, D.H., Lim, H.: Buffer management of virtualized network slices for quality-of-service satisfaction. In: 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN-2018), pp. 1–4 (2018)

    Google Scholar 

  22. Barolli, L., Koyama, A., Yamada, T., Yokoyama, S.: An integrated CAC and routing strategy for high-speed large-scale networks using cooperative agents. IPSJ J. 42(2), 222–233 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phudit Ampririt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ampririt, P., Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L. (2022). A Fuzzy-Based System for Handover in 5G Wireless Networks Considering Network Slicing Constraints. In: Barolli, L. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2022. Lecture Notes in Networks and Systems, vol 497. Springer, Cham. https://doi.org/10.1007/978-3-031-08812-4_18

Download citation

Publish with us

Policies and ethics