Abstract
Recently, underwater communication has been developing in many ways, such as wired communication, underwater acoustic communication (UAC), underwater radio wave wireless communication (URWC), underwater optical wireless communication (UOWC). The main issue in underwater communication is the communication interruption because signals are affected by various factors in underwater environment. Consequently, communication links are unstable and real time communication is almost impossible. Therefore, we considered combining both underwater communication and delay tolerant network technologies. In this paper, we present the Focused Beam Routing considering node Direction (FBRD) protocol for UOWC, we use ONE simulator to evaluate the performance regarding delivery probability. The results show better results for FBR angles around 30\(^\circ \), while if we use angles over 30\(^\circ \), the delivery probability decreases, because of the short communication ranges. In addition, the proposed FBRD protocol not only achieved high delivery provability than FBR but also has lower hop counts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, S.H., Kang, H., Kim, D.: Vehicular delay tolerant network (VDTN): routing perspectives. In: 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp. 898–903. IEEE (2015)
Awan, K.M., Shah, P.A., Iqbal, K., Gillani, S., Ahmad, W., Nam, Y.: Underwater wireless sensor networks: a review of recent issues and challenges. Wirel. Commun. Mob. Comput. 2019, 20 (2019). https://doi.org/10.1155/2019/6470359. Article ID 6470359
Azuma, M., Uchimura, S., Tada, Y., Ikeda, M., Barolli, L.: A hybrid message delivery method for vehicular DTN considering impact of shuttle buses and roadside units. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 227, pp. 211–218. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75078-7_22
Jouhari, M., Ibrahimi, K., Tembine, H., Ben-Othman, J.: Underwater wireless sensor networks: a survey on enabling technologies, localization protocols, and internet of underwater things. IEEE Access 7, 96879–96899 (2019)
Keränen, A., Ott, J., Kärkkäinen, T.: The one simulator for DTN protocol evaluation. In: Proceedings of the 2nd International Conference on Simulation tools and Techniques, pp. 1–10 (2009)
Kulla, E., Katayama, K., Matsuo, K., Barolli, L.: Enhanced focused beam routing in underwater wireless sensor networks. In: Barolli, L., Natwichai, J., Enokido, T. (eds.) EIDWT 2021. LNDECT, vol. 65, pp. 1–9. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70639-5_1
Qureshi, U.M., et al.: RF path and absorption loss estimation for underwater wireless sensor networks in different water environments. Sensors 16(6), 890 (2016)
Sawa, T., Nishimura, N., Tojo, K., Ito, S.: Practical performance and prospect of underwater optical wireless communication: -results of optical characteristic measurement at visible light band under water and communication tests with the prototype modem in the sea-. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102(1), 156–167 (2019)
Schirripa Spagnolo, G., Cozzella, L., Leccese, F.: Underwater optical wireless communications: overview. Sensors 20(8), 2261 (2020)
Spaho, E., Barolli, L., Kolici, V., Lala, A.: Performance evaluation of different routing protocols in a vehicular delay tolerant network. In: 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 157–162. IEEE (2015)
Sticklus, J., Hoeher, P.A., Röttgers, R.: Optical underwater communication: the potential of using converted green LEDs in coastal waters. IEEE J. Oceanic Eng. 44(2), 535–547 (2018)
Tikhonov, E., Schneps-Schneppe, D., Namiot, D.: Delay tolerant network potential in a railway network. In: 2020 26th Conference of Open Innovations Association (FRUCT), pp. 438–448. IEEE (2020)
Tikhonov, E., Schneps-Schneppe, D., Namiot, D.: Delay tolerant network protocols for an expanding network on a railway. In: 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), pp. 1–6. IEEE (2020)
Xiao, M., Huang, L.: Delay-tolerant network routing algorithm. J. Comput. Res. Dev. 46(7), 1065 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Matsuo, K., Kulla, E., Barolli, L. (2022). A Focused Beam Routing Protocol Considering Node Direction for Underwater Optical Wireless Communication in Delay Tolerant Networks. In: Barolli, L. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2022. Lecture Notes in Networks and Systems, vol 497. Springer, Cham. https://doi.org/10.1007/978-3-031-08812-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-08812-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08811-7
Online ISBN: 978-3-031-08812-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)