Skip to main content

A Fast Convergence RDVM for Router Placement in WMNs: Performance Comparison of FC-RDVM with RDVM by WMN-PSOHC Hybrid Intelligent System

  • Conference paper
  • First Online:
Complex, Intelligent and Software Intensive Systems (CISIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 497))

  • 585 Accesses

Abstract

Wireless Mesh Networks (WMNs) have many advantages such as easy maintenance, low upfront cost and high robustness. However, WMNs have some problems such as node placement problem, security, transmission power and so on. In our previous work, we implemented a hybrid simulation system based on Particle Swarm Optimization (PSO) and Hill Climbing (HC) called WMN-PSOHC for solving the node placement problem in WMNs. We also proposed and impremented Rational Decrement of Vmax Method (RDVM). In this paper, we propose and implement a Fast Convergence RDVM (FC-RDVM). We compare the performance of FC-RDVM with RDVM. Simulation results show that FC-RDVM has better performance than RDVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  2. Ozera, K., Bylykbashi, K., Liu, Y., Barolli, L.: A fuzzy-based approach for cluster management in VANETs: performance evaluation for two fuzzy-based systems. Internet of Things 3, 120–133 (2018)

    Article  Google Scholar 

  3. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  4. Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Analysis of WMN-HC simulation system data using friedman test. In: The Ninth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2015), pp 254–259. IEEE (2015)

    Google Scholar 

  5. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Networks Distributed Syst. 17(1), 1–13 (2016)

    Article  Google Scholar 

  6. Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Networks Appl. 23(1), 27–33 (2017). https://doi.org/10.1007/s11036-017-0897-7

    Article  Google Scholar 

  7. Sakamoto, S., Barolli, A., Barolli, L., Okamoto, S.: Implementation of a web interface for hybrid intelligent systems. Int. J. Web Inf. Syst. 15(4), 420–431 (2019)

    Article  Google Scholar 

  8. Sakamoto, S., Barolli, L., Okamoto, S.: WMN-PSOSA: an intelligent hybrid simulation system for WMNs and its performance evaluations. Int. J. Web Grid Serv. 15(4), 353–366 (2019)

    Article  Google Scholar 

  9. Sakamoto, S., Barolli, L., Okamoto, S.: A comparison study of linearly decreasing inertia weight method and rational decrement of VMAX method for WMNs using WMN-PSOHC intelligent system considering normal distribution of mesh clients. In: Barolli, L., Natwichai, J., Enokido, T. (eds.) EIDWT 2021. LNDECT, vol. 65, pp. 104–113. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70639-5_10

    Chapter  Google Scholar 

  10. Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Global Optim. 31(1), 93–108 (2005)

    Article  MathSciNet  Google Scholar 

  11. Shi, Y.: Particle swarm optimization. IEEE Connections 2(1), 8–13 (2004)

    Google Scholar 

  12. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, pp. 591–600 (1998)

    Google Scholar 

  13. Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)

    Google Scholar 

  14. Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakamoto, S., Barolli, A., Liu, Y., Kulla, E., Barolli, L., Takizawa, M. (2022). A Fast Convergence RDVM for Router Placement in WMNs: Performance Comparison of FC-RDVM with RDVM by WMN-PSOHC Hybrid Intelligent System. In: Barolli, L. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2022. Lecture Notes in Networks and Systems, vol 497. Springer, Cham. https://doi.org/10.1007/978-3-031-08812-4_3

Download citation

Publish with us

Policies and ethics