Skip to main content

3D Reconstruction Based on the Depth Image: A Review

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 496))

Abstract

Three-dimensional (3D) reconstruction is an important field of computer vision. Though Image-based 3D reconstruction is more widely used due to its low environmental requirements, current research on 3D reconstruction based on the depth image is still very limited and many aspects need improvements. This paper reviews the basic process of 3D reconstruction technology based on the depth image and introduces relevant technologies in detail. The core algorithms and methods are analyzed by comparing advantages and disadvantages and representative research works in recent years are concluded. Furthermore, future research prospects of 3D reconstruction based on the depth image are proposed by analysis of hot spots, difficulties, and possible development trends in technical research to provide support for relevant researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moons, T., Van Gool, L., Vergauwen, M.: 3D reconstruction from multiple images part 1: Principles. Found Trends® Comput Graph Vis. 4(4), 287–404 (2010)

    Google Scholar 

  2. Gomes, L., Bellon, O.R.P., Silva, L.: 3D reconstruction methods for digital preservation of cultural heritage: a survey. Pattern Recognit Lett. 50, 3–14 (2014)

    Article  Google Scholar 

  3. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  4. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)

    Google Scholar 

  6. Liu, R., Burschka, D., Hirzinger, G.: A novel approach to automatic registration of point clouds. In: 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 401–404. IEEE (2007)

    Google Scholar 

  7. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303–312. ACM Press (1996)

    Google Scholar 

  8. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph (ACM). 21(4), 163–169 (1987)

    Article  Google Scholar 

  9. Gopi, M., Krishnan, S.: A fast and efficient projection-based approach for surface reconstruction. In: Proceedings XV Brazilian Symposium on Computer Graphics and Image Processing, pp. 179–186. IEEE (2000)

    Google Scholar 

  10. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  11. He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on Computer Vision, pp. 1–14. Springer (2010)

    Google Scholar 

  12. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998)

    Google Scholar 

  13. Farbman, Z., et al.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  14. Xiao, H., et al.: A parallel algorithm of image mean filtering based on OpenCL. IEEE Access. 9, 65001–65016 (2021)

    Article  Google Scholar 

  15. Fu, H., et al.: An anisotropic Gaussian filtering model for image de-hazing. IEEE Access. 8, 175140–175149 (2020)

    Article  Google Scholar 

  16. Liu, C., Yang, C., Wang, J.: Window-aware guided image filtering via local entropy. IET Image Process. 15(7), 1459–1470 (2021)

    Article  Google Scholar 

  17. Singh, K., Kansal, A., Singh, G.: An improved median filtering anti-forensics with better image quality and forensic undetectability. Multidimension. Syst. Signal Process. 30(4), 1951–1974 (2019). https://doi.org/10.1007/s11045-019-00637-8

    Article  Google Scholar 

  18. Patwari, M., et al.: JBFnet-low dose CT denoising by trainable joint bilateral filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 506–515. Springer (2020)

    Google Scholar 

  19. Ren, Y., et al.: A global weighted least-squares optimization framework for speckle filtering of PolSAR imagery. IEEE Trans. Geosci. Remote Sens. 57(3), 1265–1277 (2018)

    Article  Google Scholar 

  20. Peng, Y.T., Huang, S.W.: Image impulse noise removal using cascaded filtering based on overlapped adaptive gaussian smoothing and convolutional refinement networks. IEEE Open J. Comput. Soc. 2, 382–392 (2021)

    Article  Google Scholar 

  21. Iwahori, Y., et al.: Shape recovery using improved fast marching method for SEM image. In: 2018 5th International Conference on Computational Science/Intelligence and Applied Informatics (CSII), pp. 60–65. IEEE (2018)

    Google Scholar 

  22. Huang, Y. L., Hsu, T. W., Chien, S. Y.: Edge-aware depth completion for point-cloud 3D scene visualization on an RGB-D camera. In: 2014 IEEE Visual Communications and Image Processing Conference (VCIP), pp. 422–425. IEEE (2014)

    Google Scholar 

  23. Censi, A.: An ICP variant using a point-to-line metric. In: 2008 IEEE International Conference on Robotics and Automation (ICRA), pp. 19–25. IEEE (2008)

    Google Scholar 

  24. Qingshan, W., Jun, Z.: Point Cloud Registration Algorithm Based on Combination of NDT and PLICP. In: 2019 15th International Conference on Computational Intelligence and Security (CIS), pp. 132–136. IEEE (2019)

    Google Scholar 

  25. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  26. Low, K.L.: Linear least-squares optimization for point-to-plane icp surface registration. Chapel Hill, University of North Carolina 4(10), 1–3 (2004)

    Google Scholar 

  27. Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: Robotics: science and systems, vol. 2, No. 4, p. 435 (2009)

    Google Scholar 

  28. Serafin, J., Grisetti, G.: Using augmented measurements to improve the convergence of ICP. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 566–577. Springer (2014)

    Google Scholar 

  29. Serafin, J.: Using Extended Measurements and Geometric Features for Robust Long-Term Localization and Mapping. Doctoral dissertation, Sapienza University of Rome (2017)

    Google Scholar 

  30. Tang, D., et al.: Deep implicit volume compression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 1293–1303. IEEE (2020)

    Google Scholar 

  31. Kang, J., et al.: WarpingFusion: accurate multi-view TSDF fusion with local perspective warp. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1564–1568. IEEE (2021)

    Google Scholar 

  32. Chen, Z., Zhang, H.: Neural marching cubes. ACM Trans Graph. 40(6), 1–15 (2021)

    Article  Google Scholar 

  33. Yu, Q., et al.: Incremental poisson surface reconstruction for large scale three-dimensional modeling. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pp. 442–453. Springer (2019)

    Google Scholar 

  34. Sakai, K., Yasumura, Y.: Three-dimensional shape reconstruction from a single image based on feature learning. In: 2018 International Workshop on Advanced Image Technology (IWAIT), pp. 1–4. IEEE (2018)

    Google Scholar 

  35. Zhang, R., et al.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999)

    Article  Google Scholar 

  36. Hassner, T., Basri, R.: Example based 3D reconstruction from single 2D images. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), p. 15. IEEE (2006)

    Google Scholar 

  37. Mori, Y., Yasumura, Y., Uehara, K.: 3D Face reconstruction from a single image using machine learning methodology. In: Proceedings of the 2009 ICMITA, pp. 29–32 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant Number: 52130403, Fundamental Research Funds for the Central Universities under Grant Number: N2017003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mi, Q., Gao, T. (2022). 3D Reconstruction Based on the Depth Image: A Review. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2022. Lecture Notes in Networks and Systems, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-031-08819-3_17

Download citation

Publish with us

Policies and ethics