Skip to main content

A Sensing Platform to Monitor Sleep Efficiency

  • Conference paper
  • First Online:
Ambient Assisted Living (ForItAAL 2020)

Abstract

Sleep plays a fundamental role in the human life. Sleep research is mainly focused on the understanding of the sleep patterns, stages and duration. An accurate sleep monitoring can detect early signs of sleep deprivation and insomnia consequentially implementing mechanisms for preventing and overcoming these problems. Recently, sleep monitoring has been achieved using wearable technologies, able to analyse also the body movements, but old people can encounter some difficulties in using and maintaining these devices. In this paper, we propose an unobtrusive sensing platform able to analyze body movements, infer sleep duration and awakenings occurred along the night, and evaluating the sleep efficiency index. To prove the feasibility of the suggested method we did a pilot trial in which several healthy users have been involved. The sensors were installed within the bed and, on each day, each user was administered with the Groningen Sleep Quality Scale questionnaire to evaluate the user’s perceived sleep quality. Finally, we show potential correlation between a perceived evaluation with an objective index as the sleep efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crowley, K.: Sleep and sleep disorders in older adults. Neuropsychol. Rev. 21(1), 41–53 (2011). https://doi.org/10.1007/s11065-010-9154-6

    Article  Google Scholar 

  2. Zeitlhofer, J., et al.: Sleep and quality of life in the Austrian population. Acta Neurol. Scand. 102(4), 249–257 (2000)

    Article  Google Scholar 

  3. Urponen, H., Vuori, I., Hasan, J., Partinen, M.: Self-evaluations of factors promoting and disturbing sleep: an epidemiological survey in Finland. Soc. Sci. Med. 26(4), 443–450 (1988)

    Article  Google Scholar 

  4. Wiggs, L., Montgomery, P., Stores, G.: Actigraphic and parent reports of sleep patterns and sleep disorders in children with subtypes of attention-deficit hyperactivity disorder. Sleep 28(11), 1437 (2005)

    Article  Google Scholar 

  5. Kushida, C.A., Chang, A., Gadkary, C., Guilleminault, C., Carrillo, O., Dement, W.C.: Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2(5), 389–396 (2001)

    Article  Google Scholar 

  6. O’Brien, M.A.: Understanding human-technology interactions: the role of prior experience and age. Georgia Institute of Technology (2010)

    Google Scholar 

  7. Petrov, M.E.R., Lichstein, K.L., Huisingh, C.E., Bradley, L.A.: Predictors of adherence to a brief behavioral insomnia intervention: daily process analysis. Behav. Ther. 45(3), 430–442 (2014)

    Article  Google Scholar 

  8. Matthews, E.E., Schmiege, S.J., Cook, P.F., Berger, A.M., Aloia, M.S.: Adherence to cognitive behavioral therapy for insomnia (CBTI) among women following primary breast cancer treatment: a pilot study. Behav. Sleep Med. 10(3), 217–229 (2012)

    Article  Google Scholar 

  9. Foley, D., Ancoli-Israel, S., Britz, P., Walsh, J.: Sleep disturbances and chronic disease in older adults: results of the 2003 National Sleep Foundation Sleep in America Survey. J. Psychosom. Res. 56(5), 497–502 (2004)

    Article  Google Scholar 

  10. Hoque, E., Dickerson, R.F., Stankovic, J.A.: Monitoring body positions and movements during sleep using wisps. In: Wireless Health 2010, WH 2010, pp. 44–53. Association for Computing Machinery, New York (2010)

    Google Scholar 

  11. Giganti, F., Ficca, G., Gori, S., Salzarulo, P.: Body movements during night sleep and their relationship with sleep stages are further modified in very old subjects. Brain Res. Bull. 75(1), 66–69 (2008)

    Article  Google Scholar 

  12. Alfeo, A.L., Barsocchi, P., Cimino, M.G.C.A., La Rosa, D., Palumbo, F., Vaglini, G.: Sleep behavior assessment via smartwatch and stigmergic receptive fields. Pers. Ubiquit. Comput. 22(2), 227–243 (2017). https://doi.org/10.1007/s00779-017-1038-9

    Article  Google Scholar 

  13. Marino, P.L.: Marino’s the ICU Book. Lippincott Williams & Wilkins (2013)

    Google Scholar 

  14. Acebo, C., et al.: Estimating sleep patterns with activity monitoring in children and adolescents: how many nights are necessary for reliable measures? Sleep 22(1), 95–103 (1999)

    Article  Google Scholar 

  15. Barsocchi, P.: Position recognition to support bedsores prevention. IEEE J. Biomed. Health Inform. 17(1), 53–59 (2013)

    Article  Google Scholar 

  16. Palumbo, F., Barsocchi, P., Furfari, F., Ferro, E.: AAL middleware infrastructure for green bed activity monitoring. J. Sens. 2013, 1–15 (2013). https://doi.org/10.1155/2013/510126

    Article  Google Scholar 

  17. Townsend, D.I., Holtzman, M., Goubran, R., Frize, M., Knoefel, F.: Measurement of torso movement with delay mapping using an unobtrusive pressure-sensor array. IEEE Trans. Instrum. Meas. 60(5), 1751–1760 (2011)

    Article  Google Scholar 

  18. Rus, S., Grosse-Puppendahl, T., Kuijper, A.: Recognition of bed postures using mutual capacitance sensing. In: Rus, S., Grosse-Puppendahl, T., Kuijper, A. (eds.) AmI 2014. LNISA, vol. 8850, pp. 51–66. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14112-1_5

    Chapter  Google Scholar 

  19. Crivello, A., Barsocchi, P., Girolami, M., Palumbo, F.: The meaning of sleep quality: a survey of available technologies. IEEE Access 7, 167374–167390 (2019)

    Article  Google Scholar 

  20. Barsocchi, P., Bianchini, M., Crivello, A., La Rosa, D., Palumbo, F., Scarselli, F.: An unobtrusive sleep monitoring system for the human sleep behaviour understanding. In: 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000091–000096. IEEE (2016)

    Google Scholar 

  21. Crivello, A., Palumbo, F., Barsocchi, P., La Rosa, D., Scarselli, F., Bianchini, M.: Understanding human sleep behaviour by machine learning. In: Klempous, R., Nikodem, J., Baranyi, P.Z. (eds.) Cognitive Infocommunications, Theory and Applications. TIEI, vol. 13, pp. 227–252. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95996-2_11

    Chapter  Google Scholar 

  22. Delmastro, F., et al.: Long-term care: how to improve the quality of life with mobile and e-health services. In: 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 12–19. IEEE (2018)

    Google Scholar 

  23. Delmastro, F., et al.: Experimenting mobile and e-health services with frail MCI older people. Information 10(8), 253 (2019)

    Article  Google Scholar 

  24. Schutte-Rodin, S., Broch, L., Buysse, D., Dorsey, C., Sateia, M.: Clinical guideline for the evaluation and management of chronic insomnia in adults. J. Clin. Sleep Med. 4(5), 487–504 (2008)

    Article  Google Scholar 

  25. Wilhelm, E., Crivelli, F., Gerig, N., Kohler, M., Riener, R.: The anti-snoring bed-a pilot study. Sleep Sci. Pract. 4(1), 1–8 (2020). https://doi.org/10.1186/s41606-020-00050-2

    Article  Google Scholar 

  26. Johns, M.W.: A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6), 540–545 (1991)

    Article  Google Scholar 

  27. Meijman, T., de Vries-Griever, A., De Vries, G., Kampman, R.: The evaluation of the Groningen sleep quality scale. Heymans Bulletin (HB 88-13-EX), Groningen 2006 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide La Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crivello, A., La Rosa, D., Wilhelm, E., Palumbo, F. (2022). A Sensing Platform to Monitor Sleep Efficiency. In: Bettelli, A., Monteriù, A., Gamberini, L. (eds) Ambient Assisted Living. ForItAAL 2020. Lecture Notes in Electrical Engineering, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-031-08838-4_23

Download citation

Publish with us

Policies and ethics