Skip to main content

Impact of Self-organization on Tertiary Objectives of Production Planning and Control

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2021)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 455))

Included in the following conference series:

  • 519 Accesses

Abstract

Today’s production is challenged by disruptive technologies, rapid changing customer needs and varying demands. Thus, production needs to satisfy not only primary and secondary but also tertiary objectives. Many production planning and control approaches have been evolved and proven to comply with primary and secondary objectives with ease. In this paper we look at the tertiary goals of production, such as flexibility, robustness and stability. Since there is no clarity about these terms and they are often mixed up in the literature. Using the example of a modern self-organizing and a classically centrally planned production, we will show the impact of uncertainty on these objectives. This comparison of the self-organizing and the centrally planned production includes the generation of realistic production data, as well as the procedure to apply the same production data and uncertainty in both the self-organizing and the centrally planned production.

Supported by German Federal Ministry of Education and Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderer, S., Vu, T.H., Scheuermann, B., Mostaghim, S.: Meta heuristics for dynamic machine scheduling: a review of research efforts and industrial requirements. In: Proceedings of the 10th International Joint Conference on Computational Intelligence, pp. 192–203. SCITEPRESS - Science and Technology Publications (2018). https://doi.org/10.5220/0006930701920203

  2. Ashby, W.R.: Principles of the self-organizing system. In: Foerster, H., Zopf, G.W. (eds.) Principles of Self-organization: Transactions of the University of Illinois Symposium, pp. 255–278. Pergamon, London (1962)

    Google Scholar 

  3. Abdallah, A.B., Phan, A.C., Matsui, Y.: Investigating the relationship between strategic manufacturing goals and mass customization (2009). https://doi.org/10.13140/2.1.4404.8160

  4. Beach, R., Muhlemann, A.P., Price, D., Paterson, A., Sharp, J.A.: A review of manufacturing flexibility. Eur. J. Oper. Res. 122(1), 41–57 (2000). https://doi.org/10.1016/S0377-2217(99)00062-4

    Article  MATH  Google Scholar 

  5. Billaut, J.C., Moukrim, A., Sanlaville, E.: Flexibility and Robustness in Scheduling. Wiley, Hoboken (2013)

    Google Scholar 

  6. Blocher, J.D., Chhajed, D., Leung, M.: Customer order scheduling in a general job shop environment. Decis. Sci. 29(4), 951–981 (1998). https://doi.org/10.1111/j.1540-5915.1998.tb00883.x

    Article  Google Scholar 

  7. Bloech, J., Bogaschewsky, R., Buscher, U., Daub, A., Götze, U., Roland, F.: Gegenstand und ziele der produktion. In: Bloech, J., Bogaschewsky, R., Buscher, U., Daub, A., Götze, U., Roland, F. (eds.) Einführung in die Produktion, pp. 1–10. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-31893-1_1

  8. Bondi, A.B.: Characteristics of scalability and their impact on performance. In: Woodside, M., Gomaa, H., Menasce, D. (eds.) Proceedings of the Second International Workshop on Software and Performance - WOSP 2000, pp. 195–203. ACM Press, New York (2000). https://doi.org/10.1145/350391.350432

  9. Bueno, A., Godinho Filho, M., Frank, A.G.: Smart production planning and control in the industry 4.0 context: a systematic literature review. Comput. Industr. Eng. 149, 106774 (2020). https://doi.org/10.1016/j.cie.2020.106774

    Article  Google Scholar 

  10. Buzacott, J.: The fundamental principles of flexibility in manufacturing systems. [No source information available] (1982)

    Google Scholar 

  11. Caesar, B., Grigoleit, F., Unverdorben, S.: (Self-)adaptiveness for manufacturing systems: challenges and approaches. SICS Softw.-Intensive Cyber-Phys. Syst. 34(4), 191–200 (2019). https://doi.org/10.1007/s00450-019-00423-8

    Article  Google Scholar 

  12. Clark, J.B., Jacques, D.R.: Practical measurement of complexity in dynamic systems. Proc. Comput. Sci. 8, 14–21 (2012). https://doi.org/10.1016/j.procs.2012.01.008

    Article  Google Scholar 

  13. Corsten, H., Gössinger, R.: Production management (Produktionswirtschaft): introduction to industrial production management (Einführung in das industrielle Produktionsmanagement). Lehr-und Handbücher der Betriebswirtschaftslehre, Oldenbourg, München, 13, vollst. überarb. und erw. aufl. edn. (2012)

    Google Scholar 

  14. Libes, D., Lechevalier, D., Jain, S.: Issues in synthetic data generation for advanced manufacturing. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1746–1754 (2017). https://doi.org/10.1109/BigData.2017.8258117

  15. Achabal, D.D., Heineke, J.M., McIntyre, S.: Issues and perspectives on retail productivity. ERN: Productivity (Topic) (1984)

    Google Scholar 

  16. Denkena, B., Lorenzen, L.E., Schmidt, J.: Adaptive process planning. Prod. Eng. Res. Devel. 6(1), 55–67 (2012). https://doi.org/10.1007/s11740-011-0353-7

    Article  Google Scholar 

  17. Gershenson, C.: Guiding the self-organization of random boolean networks. Theory Biosci. = Theorie Biowissenschaften 131(3), 181–191 (2012). https://doi.org/10.1007/s12064-011-0144-x

  18. Heinrich, C.E.: Mehrstufige Losgrößenplanung in hierarchisch strukturierten Produktionsplanungssystemen. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-662-08649-0

  19. Heisig, G.: Planning stability under (s, s) inventory control rules. OR Spectr. 20(4), 215–228 (1998). https://doi.org/10.1007/BF01539739

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, D., Kannengiesser, N., Sturm, B., Sunyaev, A.: Tackling challenges of robustness measures for autonomous agent collaboration in open multi-agent systems (2022)

    Google Scholar 

  21. Jogalekar, P., Woodside, M.: Evaluating the scalability of distributed systems. IEEE Trans. Parallel Distrib. Syst. 11(6), 589–603 (2000). https://doi.org/10.1109/71.862209

    Article  Google Scholar 

  22. Klein, M., Löcklin, A., Jazdi, N., Weyrich, M.: A negotiation based approach for agent based production scheduling. Proc. Manuf. 17, 334–341 (2018). https://doi.org/10.1016/j.promfg.2018.10.054

    Article  Google Scholar 

  23. Krockert, M., Matthes, M., Munkelt, T.: Agent-based decentral production planning and control: a new approach for multi-resource scheduling. In: Proceedings of the 23rd International Conference on Enterprise Information Systems, pp. 442–451. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010436204420451

  24. Krockert, M., Matthes, M., Munkelt, T.: Dynamic lot sizing in a self-organizing production. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence, pp. 361–367. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010300803610367

  25. Krockert, M., Matthes, M., Munkelt, T., Völker, S.: Generierung realitätsnaher testdaten für die simulation von produktionen. In: Franke, J., Schuderer, P. (eds.) Simulation in Produktion und Logistik 2021, pp. 565–574. Cuvillier Verlag, Göttingen (2021)

    Google Scholar 

  26. Krockert, M., Munkelt, T., Matthes, M.: SOBA: a self-organizing bucket architecture to reduce setup times in an event-driven production. In: IARIA (ed.) ADAPTIVE 2020 (2020)

    Google Scholar 

  27. Kronberger, G., Kerschbaumer, B., Weidenhiller, A., Jodlbauer, H.: Automated simulation model generation for scheduler-benchmarking in manufacturing, pp. 45–50 (2006)

    Google Scholar 

  28. Kurbel, K.: Enterprise Resource Planning und Supply Chain Management in der Industrie: Von MRP bis Industrie 4.0. De Gruyter-Studium, De Gruyter Oldenbourg, Berlin and Boston, 8, vollst. überarb. und erw. auflage edn. (2016)

    Google Scholar 

  29. Monostori, L., Váncza, J., Kumara, S.: Agent-based systems for manufacturing. CIRP Ann. Manuf. Technol. 55, 697–720 (2006)

    Article  Google Scholar 

  30. Leusin, M., Frazzon, E., Uriona Maldonado, M., Kück, M., Freitag, M.: Solving the job-shop scheduling problem in the industry 4.0 era. Technologies 6(4), 107 (2018). https://doi.org/10.3390/technologies6040107

    Article  Google Scholar 

  31. Leusin, M.E., Kück, M., Frazzon, E.M., Maldonado, M.U., Freitag, M.: Potential of a multi-agent system approach for production control in smart factories. IFAC-PapersOnLine 51(11), 1459–1464 (2018). https://doi.org/10.1016/j.ifacol.2018.08.309

    Article  Google Scholar 

  32. Ribeiro, L., Rocha, A., Veiga, A., Barata, J.: Collaborative routing of products using a self-organizing mechatronic agent framework-a simulation study. Comput. Ind. 68, 27–39 (2015). https://doi.org/10.1016/j.compind.2014.12.003, https://www.sciencedirect.com/science/article/pii/S0166361514002085

  33. Maksimovic, R., Stankovski, S., Ostojic, G., Petrovic, S., Ratkovic, Z.: Complexity and flexibility of production structures. J. Sci. Ind. Res. 69, 101–105 (2010)

    Google Scholar 

  34. Marks, P., Hoang, X.L., Weyrich, M., Fay, A.: A systematic approach for supporting the adaptation process of discrete manufacturing machines. Res. Eng. Design 29(4), 621–641 (2018). https://doi.org/10.1007/s00163-018-0296-5

    Article  Google Scholar 

  35. Krockert, M., Matthes, M., Munkelt, T.: Suitability of self-organization for different types of production. Proc. Manuf. 54, 124–129 (2021). https://doi.org/10.1016/j.promfg.2021.07.020, https://www.sciencedirect.com/science/article/pii/S2351978921001542

  36. McPhail, C., Maier, H.R., Kwakkel, J.H., Giuliani, M., Castelletti, A., Westra, S.: Robustness metrics: how are they calculated, when should they be used and why do they give different results? Earth’s Future 6(2), 169–191 (2018). https://doi.org/10.1002/2017EF000649

    Article  Google Scholar 

  37. Moghaddam, S.K., Saitou, K.: Predictive-reactive rescheduling for new order arrivals with optimal dynamic pegging. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 710–715 (2020). https://doi.org/10.1109/CASE48305.2020.9216870

  38. Muchiri, P., Pintelon, L.: Performance measurement using overall equipment effectiveness (OEE): literature review and practical application discussion. Int. J. Prod. Res. 46(13), 3517–3535 (2008). https://doi.org/10.1080/00207540601142645

    Article  MATH  Google Scholar 

  39. Munkelt, T., Krockert, M.: Agent-based self-organization versus central production planning. In: 2018 Winter Simulation Conference (WSC), pp. 3241–3251. IEEE, Piscataway (2018). https://doi.org/10.1109/WSC.2018.8632305

  40. Nakajima, S.: Introduction to TPM: Total productive maintenance. Productivity Press, Cambridge (1988)

    Google Scholar 

  41. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating robust schedules through temporal flexibility. In: ICAPS (2004)

    Google Scholar 

  42. Nyhuis, P., Münzberg, B., Kennemann, M.: Configuration and regulation of PPC. Prod. Eng. 3(3), 287–294 (2009). https://doi.org/10.1007/s11740-009-0162-4

    Article  Google Scholar 

  43. Osama Taisir: Total productive maintenance review and overall equipment effectiveness measurement

    Google Scholar 

  44. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2009). https://doi.org/10.1007/s10951-008-0090-8

    Article  MathSciNet  MATH  Google Scholar 

  45. Rangsaritratsamee, R., Ferrell, W.G., Kurz, M.B.: Dynamic rescheduling that simultaneously considers efficiency and stability. Comput. Ind. Eng. 46(1), 1–15 (2004). https://doi.org/10.1016/j.cie.2003.09.007

    Article  Google Scholar 

  46. Schuh, G., Prote, J.-P., Gützlaff, A., Henk, S.: Handling uncertainties in production network design. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IAICT, vol. 567, pp. 43–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29996-5_5

    Chapter  Google Scholar 

  47. Shewchuk, J.P., Moodie, C.L.: Definition and classification of manufacturing flexibility types and measures. Int. J. Flex. Manuf. Syst. 10(4), 325–349 (1998). https://doi.org/10.1023/A:1008062220281

    Article  Google Scholar 

  48. Slack, N.: Flexibility as a manufacturing objective. Int. J. Oper. Prod. Manage. 3(3), 4–13 (1983). https://doi.org/10.1108/eb054696

    Article  Google Scholar 

  49. Döring, T., Munkelt, T., Völker, S.: Generierung komplexer testdaten zur statistischen analyse von verfahren der produktionsplanung und -steuerung. In: Böselt, M. (ed.) Amtliche und Nichtamtliche Statistiken - 12. Ilmenauer Wirtschaftsforum, Tagungsband, pp. 34–46. Technische Universität Ilmenau, Fakultät für Wirtschaftswissenschaften, Fachgebiet Wirtschaftsstatistik und Operations Research (1999)

    Google Scholar 

  50. Uhlmann, E., Hohwieler, E. (eds.): iWePro: Intelligente Kooperation und Vernetzung für die Werkstattfertigung. Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK, Berlin (2017). 3009

    Google Scholar 

  51. van Belle, J., Valckenaers, P., Germain, B.S., Bahtiar, R., Cattrysse, D.: Bio-inspired coordination and control in self-organizing logistic execution systems. In: 2011 9th IEEE International Conference on Industrial Informatics, pp. 713–718. IEEE (2011). https://doi.org/10.1109/indin.2011.6034979

  52. VDI: Wandlungsfähigkeit: Beschreibung und messung der wandlungsfähigkeit produzierender unternehmen (2017)

    Google Scholar 

  53. Wong, W.P., Soh, K.L., Le Chong, C., Karia, N.: Logistics firms performance: efficiency and effectiveness perspectives. Int. J. Product. Perform. Manag. 64(5), 686–701 (2015). https://doi.org/10.1108/ijppm-12-2013-0205

    Article  Google Scholar 

  54. Wu, M., He, Y., She, J.H.: Stability analysis and robust control of time-delay systems. Science Press and Springer, Beijing and Berlin and Heidelberg and Dordrecht and London and New York (2010). https://www.loc.gov/catdir/enhancements/fy1616/2009942249-d.html

  55. Wu, S., Storer, R.H., Pei-Chann, C.: One-machine rescheduling heuristics with efficiency and stability as criteria. Comput. Oper. Res. 20(1), 1–14 (1993). https://doi.org/10.1016/0305-0548(93)90091-V

    Article  MATH  Google Scholar 

  56. Zaeh, M.F., Ostgathe, M., Geiger, F., Reinhart, G.: Adaptive job control in the cognitive factory. In: ElMaraghy, H.A. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 10–17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23860-4_2

    Chapter  Google Scholar 

  57. Zahran, I.M., Elmaghraby, A.S., Shalaby, M.A.: Evaluation of flexibility in manufacturing systems. In: 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, pp. 49–52. IEEE (1990). https://doi.org/10.1109/ICSMC.1990.142058

  58. Zelenović, D.M.: Flexibility-a condition for effective production systems. Int. J. Product. Res. 20(3), 319–337 (1982). https://doi.org/10.1080/00207548208947770

    Article  Google Scholar 

  59. Zhang, J., Yao, X., Zhou, J., Jiang, J., Chen, X.: Self-organizing manufacturing: current status and prospect for industry 4.0, pp. 319–326 (2017). https://doi.org/10.1109/ES.2017.59

  60. Zhang, Y., Qian, C., Lv, J., Liu, Y.: Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans. Industr. Inf. 13(2), 737–747 (2017). https://doi.org/10.1109/TII.2016.2618892

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the German Federal Ministry of Education and Research within the funding program “Forschung an Fachhochschulen” (contract number: 13FH133PX8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krockert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krockert, M., Matthes, M., Munkelt, T. (2022). Impact of Self-organization on Tertiary Objectives of Production Planning and Control. In: Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S. (eds) Enterprise Information Systems. ICEIS 2021. Lecture Notes in Business Information Processing, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-031-08965-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08965-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08964-0

  • Online ISBN: 978-3-031-08965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics