Skip to main content

Comparing Hexagons of Opposition in Probabilistic Rough Set Theory

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

A hexagon of opposition built from a probabilistic rough set depends on two thresholds. This work explores the relations of opposition among vertices of hexagons obtained from pairs of thresholds. By an exhaustive analysis of the different cases that can arise, twelve patterns are defined and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(\alpha < \alpha '\), then \(P_{NEG \cup BND}\) and \(P_{POS'}\) are contraries by Theorem 4, and \(P_{NEG' \cup BND'}\) and \(P_{POS}\) are sub-contraries by Theorem 5.

  2. 2.

    If \(\beta < \beta '\), then \(P_{POS \cup BND}\) and \(P_{NEG'}\) are contraries by Theorem 4, and \(P_{POS' \cup BND'}\) and \(P_{NEG}\) are sub-contraries by Theorem 5.

  3. 3.

    If \(\beta < \alpha '\), then \(P_{POS'}\) and \(P_{NEG}\) are contraries by Theorem 15.

  4. 4.

    If \(\beta < \alpha '\), then \(P_{POS \cup BND}\) and \(P_{NEG' \cup BND'}\) are sub-contraries by Theorem 16.

References

  1. Abbruzzese, R., Gaeta, A., Loia, V., Lomasto, L., Orciuoli, F.: Detecting influential news in online communities: an approach based on hexagons of opposition generated by three-way decisions and probabilistic rough sets. Inf. Sci. 578, 364–377 (2021)

    Article  MathSciNet  Google Scholar 

  2. Agbodah, K.: The determination of three-way decisions with decision-theoretic rough sets considering the loss function evaluated by multiple experts. Granular Comput. 4(2), 285–297 (2018). https://doi.org/10.1007/s41066-018-0099-0

    Article  Google Scholar 

  3. Béziau, J.Y.: The power of the hexagon. Log. Univers. 6(1–2), 1–43 (2012)

    Article  MathSciNet  Google Scholar 

  4. Boffa, S., Murinová, P., Novák, V.: Graded polygons of opposition in fuzzy formal concept analysis. Int. J. Approx. Reason. 132, 128–153 (2021)

    Article  MathSciNet  Google Scholar 

  5. Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., et al. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 504–513. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31900-6_62

    Chapter  Google Scholar 

  6. Deng, X., Yao, Y.: An information-theoretic interpretation of thresholds in probabilistic rough sets. In: Li, T., et al. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 369–378. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31900-6_46

    Chapter  Google Scholar 

  7. Dufatanye, A.A.: From the logical square to blanché’s hexagon: formalization, applicability and the idea of the normative structure of thought. Log. Univers. 6(1–2), 45–67 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gao, C., Yao, Y.: Determining thresholds in three-way decisions with chi-square statistic. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 272–281. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_25

    Chapter  Google Scholar 

  9. Herbert, J.P., Yao, J.: Game-theoretic rough sets. Fund. Inform. 108(3–4), 267–286 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Liu, D., Li, T., Liang, D.: Three-way decisions in dynamic decision-theoretic rough sets. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 291–301. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41299-8_28

    Chapter  Google Scholar 

  11. Moretti, A.: Why the logical hexagon? Log. Univers. 6(1), 69–107 (2012)

    Article  MathSciNet  Google Scholar 

  12. Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst. 159(22), 2939–2969 (2008)

    Article  MathSciNet  Google Scholar 

  13. Parsons, T.: The traditional square of opposition (1997)

    Google Scholar 

  14. Pfeifer, N., Sanfilippo, G.: Probabilistic squares and hexagons of opposition under coherence. Int. J. Approx. Reason. 88, 282–294 (2017)

    Article  MathSciNet  Google Scholar 

  15. Yao, Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–353 (2010)

    Article  MathSciNet  Google Scholar 

  16. Yao, Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 37(6), 793–809 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Boffa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boffa, S., Ciucci, D., Murinová, P. (2022). Comparing Hexagons of Opposition in Probabilistic Rough Set Theory. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1601. Springer, Cham. https://doi.org/10.1007/978-3-031-08971-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08971-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08970-1

  • Online ISBN: 978-3-031-08971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics