Skip to main content

A Framework for Active Contour Initialization with Application to Liver Segmentation in MRI

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

Object segmentation is a prominent low-level task in image processing and computer vision. A technique of special relevance within segmentation algorithms is active contour modeling. An active contour is a closed contour on an image which can be evolved to progressively fit the silhouette of certain area or object. Active contours shall be initialized as a closed contour at some position of the image, further evolving to precisely fit to the silhouette of the object of interest. While the evolution of the contour has been deeply studied in literature [5, 11], the study of strategies to define the initial location of the contour is rather absent from it. Typically, such contour is created as a small closed curve around an inner position in the object. However, literature contains no general-purpose algorithms to determine those inner positions, or to quantify their fitness. In fact, such points are frequently set manually by human experts, hence turning the segmentation process into a semi-supervised one. In this work, we present a method to find inner points in relevant object using spatial-tonal fuzzy clustering. Our proposal intends to detect dominant clusters of bright pixels, which are further used to identify candidate points or regions around which active contours can be initialized.

The authors gratefully acknowledge the financial support of the grants PID2019-108392GB-I00 funded by MCIN/AEI/10.13039/501100011033, as well as that by the Government of Navarra (PC082-083-084 EHGNA). A. Mir acknowledges the financial support of the grant PID2020-113870GB-I00 funded by MCIN/AEI/10.13039/501100011033/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy \(c\)-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  2. Bezdek, J., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Trans. Fuzzy Syst. 6(1), 52–75 (1998)

    Article  Google Scholar 

  3. Bustince, H., Barrenechea, E., Pagola, M.: Relationship between restricted dissimilarity functions, restricted equivalence functions and normal EN-functions: image thresholding invariant. Pattern Recogn. Lett. 29(4), 525–536 (2008)

    Article  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995, pp. 694–699 (1995). https://doi.org/10.1109/ICCV.1995.466871

  5. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  6. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.L.: Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited. J. Math. Soc. Jpn. 39(4), 581–596 (1987)

    Article  MathSciNet  Google Scholar 

  9. Han, J., Kamber, M., Pei, J. (eds.): Data Mining: Concepts and Techniques. Morgan Kaufmann, Burlington (2012)

    Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  11. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proceedings of IEEE International Conference on Computer Vision, Cambridge, MA, USA, 20–23 June 1995, pp. 810–815 (1995). https://doi.org/10.1109/ICCV.1995.466855

  12. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. on Image Processing 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  13. Li, X., Luo, S., Li, J., et al.: Liver segmentation from CT image using fuzzy clustering and level set. J. Sig. Inf. Process. 4(03), 36 (2013)

    Google Scholar 

  14. Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  15. Lopez-Maestresalas, A., De Miguel, L., Lopez-Molina, C., Arazuri, S., Bustince, H., Jaren, C.: Hyperspectral imaging using notions from type-2 fuzzy sets. Soft. Comput. 23(6), 1779–1793 (2018). https://doi.org/10.1007/s00500-018-3208-8

    Article  MATH  Google Scholar 

  16. Marco-Detchart, C., Lopez-Molina, C., Fernandez, J., Bustince, H.: A gravitational approach to image smoothing. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 642, pp. 468–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66824-6_41

    Chapter  Google Scholar 

  17. Otsu, N.: Threshold selection method for gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Google Scholar 

  18. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  19. Rosin, P.L.: Unimodal thresholding. Pattern Recogn. 34(11), 2083–2096 (2001)

    Article  Google Scholar 

  20. Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36(1), 91–123 (1988)

    Article  Google Scholar 

  21. Weickert, J.: Anisotropic Diffusion in Image Processing, ECMI Series. Teubner-Verlag (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnau Mir-Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mir-Fuentes, A., Mir, A., Antunes-Santos, F., Fernandez, F.J., Lopez-Molina, C. (2022). A Framework for Active Contour Initialization with Application to Liver Segmentation in MRI. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08974-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08973-2

  • Online ISBN: 978-3-031-08974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics