Skip to main content

Fuzzy System-Based Solutions for Traffic Control in Freeway Networks Toward Sustainable Improvement

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

In the scientific community, the topic of traffic control for promoting sustainable transportation in freeway networks is a relatively new field of research that is becoming increasingly relevant. Sustainability is a critical factor in the design and operation of mobility and traffic systems, which impacts the development of freeway traffic control strategies. According to sustainable notions, freeway traffic controllers should be designed to maximize road capacity, minimize vehicle travel delays, and reduce pollution emissions, accidents, and fuel consumption. The problem is full of uncertainty, there is no way to model the whole system analytically, thus a fuzzy modeling approach seems to be not only adequate but necessary. In this study, a Fuzzy Cognitive Map based model (FCM) and a connected simple Fuzzy Inference System (FIS) are presented, as the tools to analyze freeway traffic data with the goal of traffic flow modeling at a macroscopic level, in order to address congestion-related issues as the core of the sustainability improvement strategies. Besides presenting a framework of Fuzzy system-based controllers in freeway traffic, the results of this work indicated that FIS and FCM are capable of realizing traffic control strategies involving the implementation of ramp management policies, controlling vehicle movement within the freeway by mainstream control, and routing vehicles along alternative paths via the execution of suitable route guidance strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, K., Batterman, S.: Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450–451, 307–316 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.074

    Article  Google Scholar 

  2. Ramazani, A., Vahdat-Nejad, H.: A new context-aware approach to traffic congestion estimation. In: 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 504–508 (2014)

    Google Scholar 

  3. Systematics, C.: Traffic Congestion and Reliability: Trends and Advanced Strategies for Congestion Mitigation. Cambridge Systematics Inc., Cambridge (2005)

    Google Scholar 

  4. Faris, H., Yazid, S.: Development of communication technology on VANET with a combination of ad-hoc, cellular and GPS signals as a solution traffic problems. In: 2019 7th International Conference on Information and Communication Technology (ICoICT), pp. 1–9 (2019)

    Google Scholar 

  5. Ferrara, A., Sacone, S., Siri, S.: Freeway Traffic Modelling and Control. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-75961-6

  6. Pasquale, C., Sacone, S., Siri, S., Ferrara, A.: Traffic control for freeway networks with sustainability-related objectives: Review and future challenges. Annu. Rev. Control. 48, 312–324 (2019). https://doi.org/10.1016/j.arcontrol.2019.07.002

    Article  MathSciNet  Google Scholar 

  7. Mavi, R.K., Fathi, A., Saen, R.F., Mavi, N.K.: Eco-innovation in transportation industry: a double frontier common weights analysis with ideal point method for Malmquist productivity index. Res. Cons. Recycl. 147, 39–48 (2019). ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2019.04.017

  8. Yang, X.-S. (ed.): Nature-Inspired Algorithms and Applied Optimization. SCI, vol. 744. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67669-2

    Book  MATH  Google Scholar 

  9. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2012). https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  10. Jabbarpour, M.R., Zarrabi, H., Khokhar, R.H., Shamshirband, S., Choo, K.-K.: Applications of computational intelligence in vehicle traffic congestion problem: a survey. Soft. Comput. 22(7), 2299–2320 (2017). https://doi.org/10.1007/s00500-017-2492-z

    Article  Google Scholar 

  11. Ai, C., Jia, L., Hong, M., Zhang, C.: Short-term road speed forecasting based on hybrid RBF neural network with the aid of fuzzy system-based techniques in urban traffic flow. IEEE Access 8, 69461–69470 (2020). https://doi.org/10.1109/ACCESS.2020.2986278

    Article  Google Scholar 

  12. Pinto, J.A., et al.: Traffic data in air quality modeling: a review of key variables, improvements in results, open problems and challenges in current research. Atmos. Pollut. Res. 11(3), 454–468 (2020)

    Article  Google Scholar 

  13. Castillo, H., Pitfield, D.E.: ELASTIC-a methodological framework for identifying and selecting sustainable transport indicators. Transp. Res. Part D 15, 179–188 (2010)

    Article  Google Scholar 

  14. Lajunen, T., Parker, D., Summala, H.: Does traffic congestion increase driver aggression? Transp. Res. Part F 2, 225–236 (1999)

    Article  Google Scholar 

  15. Ferrara, A., Sacone, S., Siri, S.: An overview of traffic control schemes for freeway systems. In: Ferrara, A., Sacone, S., Siri, S. (eds.) Freeway Traffic Modelling and Control, pp. 193–234. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-75961-6_8

    Chapter  MATH  Google Scholar 

  16. Lighthill, M.J., Whitham, G.B.: On kinematic waves II: a theory of traffic flow on long crowded roads. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 229, 317–345 (1955)

    Article  MathSciNet  Google Scholar 

  17. Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 215, 283–303 (2001)

    Article  Google Scholar 

  18. Ferrara, A., Sacone, S., Siri, S.: First-Order Macroscopic Traffic Models. In: Freeway Traffic Modelling and Control. AIC, pp. 47–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75961-6_3

    Chapter  MATH  Google Scholar 

  19. Ngo, C.Y., Victor, O.K.L.: Freeway traffic control using fuzzy logic controllers. Inf. Sci. 1, 59–76 (1994)

    MATH  Google Scholar 

  20. Zhao, D., Dai, Y., Zhang, Z.: Computational intelligence in urban traffic signal control: a survey. IEEE Trans. Syst. Man Cybern. 42, 485–494 (2012)

    Article  Google Scholar 

  21. John, A., Yang, Z., Riahi, R., Wang, J.: Application of a collaborative modelling and strategic fuzzy decision support system for selecting appropriate resilience strategies for seaport operations. J. Traff. Transp. Eng. (Engl. Ed.) 1(3), 159–179 (2014). https://doi.org/10.1016/S2095-7564(15)30101-X

    Article  Google Scholar 

  22. Li, Q., Qiao, F., Lei, Y.: Socio-demographic impacts on lane-changing response time and distance in work zone with drivers’ smart advisory system. J. Traff. Transp. Eng. (Engl. Ed.) 2(5), 313–326 (2015). https://doi.org/10.1016/j.jtte.2015.08.003

    Article  Google Scholar 

  23. Amini, M., Hatwagner, M.F., Mikulai, G.C., Koczy, L.T.: An intelligent traffic congestion detection approach based on fuzzy inference system. In: 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 97–104 (2021). https://doi.org/10.1109/SACI51354.2021.9465637

  24. Amini, M., Hatwágner, F.M., Mikulai, G.C., Kóczy, T.L.: Developing a macroscopic model based on fuzzy cognitive map for road traffic flow simulation. Infocommun. J.13(3), 14–23 (2021).https://doi.org/10.36244/ICJ.2021.3.2

  25. László, F.T., Péter, T.: Hungary’s its National report. ITS national report (2018). https://ec.europa.eu/transport/sites/transport/files/2018_hu_its_progress_report_2017.pdf

  26. UNECE, E.C.E.: EU transport in figures - Statistical Pocketbook 2020, Number of registered passenger cars in Hungary from 1990 to 2018. European Commission (2020)

    Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1142/9789814261302_0021

    Article  MATH  Google Scholar 

  28. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 7(1), 1–13 (1975). https://doi.org/10.1016/S0020-7373(75)80002-2

    Article  MATH  Google Scholar 

  29. Axelrod, R.: Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, Princeton (1976). https://www.jstor.org/stable/j.ctt13x0vw3

  30. Kosko, B.: Fuzzy cognitive maps. Int. J. Man. Mach. Stud. 24(1), 65–75 (1986). https://doi.org/10.1016/S0020-7373(86)80040-2

    Article  MATH  Google Scholar 

  31. Messmer, A., Papageorgiou, M.: METANET: a macroscopic simulation program for motorway networks. Traffic Eng. Control 31(8–9), 466–470 (1990). https://www.researchgate.net/publication/282285780_METANET_a_macroscopic_simulation_program_for_motorway_networks

  32. Stylios, C.D., Groumpos, P.P.: Modeling complex systems using fuzzy cognitive maps. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 34(1), 155–162 (2004). https://doi.org/10.1109/TSMCA.2003.818878

    Article  Google Scholar 

  33. Iordanidou, G.-R., Roncoli, C., Papamichail, I., Papageorgiou, M.: Feedback-based main- stream traffic flow control for multiple bottlenecks on motorways. IEEE Trans. Intell. Transp. Syst. 16, 610–621 (2015)

    Google Scholar 

  34. Afrin, T., Yodo, N.: A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability (Switzerland) 12(11), 1–23 (2020)

    Google Scholar 

  35. Aftabuzzaman, M.: Measuring traffic congestion—a critical review. In: Proceedings of the 30th Australasian Transport Research Forum (ATRF), Melbourne, Australia, 25–27 September 2007 (2007)

    Google Scholar 

  36. Turner, S.M., Lomax, T.J., Levinson, H.S.: Measuring and estimating congestion using travel time-based procedures. Transp. Res. Rec. 1564, 11–19 (1996)

    Article  Google Scholar 

  37. Amini, M., Hatwagner, M.F., Mikulai, G.C., Koczy, L.T.: A vehicular traffic congestion predictor system using Mamdani fuzzy inference. Syst. Theor. Control Comput. J. 1(2), 49–57 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Gergely Mikulai and Hungarian national toll payment services for their work on providing the original dataset. László T. Kóczy is supported by NKFIH K124055 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Amini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amini, M., Hatwagner, M.F., Koczy, L.T. (2022). Fuzzy System-Based Solutions for Traffic Control in Freeway Networks Toward Sustainable Improvement. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08974-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08973-2

  • Online ISBN: 978-3-031-08974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics