Skip to main content

Predicting Isocitrate Dehydrogenase Mutation Status in Glioma Using Structural Brain Networks and Graph Neural Networks

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12962))

Included in the following conference series:

  • 6378 Accesses

Abstract

Glioma is a common malignant brain tumor with distinct survival among patients. The isocitrate dehydrogenase (IDH) gene mutation provides critical diagnostic and prognostic value for glioma. It is of crucial significance to non-invasively predict IDH mutation based on pre-treatment MRI. Machine learning/deep learning models show reasonable performance in predicting IDH mutation using MRI. However, most models neglect the systematic brain alterations caused by tumor invasion, where widespread infiltration along white matter tracts is a hallmark of glioma. Structural brain network provides an effective tool to characterize brain organisation, which could be captured by the graph neural networks (GNN) to more accurately predict IDH mutation.

Here we propose a method to predict IDH mutation using GNN, based on the structural brain network of patients. Specifically, we firstly construct a network template of healthy subjects, consisting of atlases of edges (white matter tracts) and nodes (cortical/subcortical brain regions) to provide regions of interest (ROIs). Next, we employ autoencoders to extract the latent multi-modal MRI features from the ROIs of edges and nodes in patients, to train a GNN architecture for predicting IDH mutation. The results show that the proposed method outperforms the baseline models using the 3D-CNN and 3D-DenseNet. In addition, model interpretation suggests its ability to identify the tracts infiltrated by tumor, corresponding to clinical prior knowledge. In conclusion, integrating brain networks with GNN offers a new avenue to study brain lesions using computational neuroscience and computer vision approaches.

Y. Wei and Y. Li—Authors are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011)

    Article  Google Scholar 

  4. Choi, Y.S., et al.: Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol. 23(2), 304–313 (2021)

    Article  Google Scholar 

  5. Fagerholm, E.D., Hellyer, P.J., Scott, G., Leech, R., Sharp, D.J.: Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain 138(6), 1696–1709 (2015)

    Article  Google Scholar 

  6. Hyare, H., et al.: Modelling MR and clinical features in grade II/III astrocytomas to predict IDH mutation status. Eur. J. Radiol. 114, 120–127 (2019)

    Article  Google Scholar 

  7. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  8. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  9. Li, C., et al.: Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma. Eur. Radiol. 29(9), 4718–4729 (2019)

    Article  Google Scholar 

  10. Li, C., et al.: Characterizing tumor invasiveness of glioblastoma using multiparametric magnetic resonance imaging. J. Neurosurg. 132(5), 1465–1472 (2019)

    Article  Google Scholar 

  11. Liang, S., et al.: Multimodal 3D densenet for IDH genotype prediction in gliomas. Genes 9(8), 382 (2018)

    Article  Google Scholar 

  12. Liu, Y., et al.: Altered rich-club organization and regional topology are associated with cognitive decline in patients with frontal and temporal gliomas. Front. Hum. Neurosci. 14, 23 (2020)

    Article  Google Scholar 

  13. Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  14. Morris, C., et al.: Weisfeiler and leman go neural: Higher-order graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4602–4609 (2019)

    Google Scholar 

  15. Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  16. Ostrom, Q.T., et al.: CBtrus statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2009–2013. Neuro-oncol. 18(suppl_5), v1–v75 (2016)

    Google Scholar 

  17. Pedano, N., et al.: Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK

  18. Price, S.J., et al.: Less invasive phenotype found in isocitrate dehydrogenase-mutated glioblastomas than in isocitrate dehydrogenase wild-type glioblastomas: a diffusion-tensor imaging study. Radiology 283(1), 215–221 (2017)

    Article  Google Scholar 

  19. Salvalaggio, A., De Filippo De Grazia, M., Zorzi, M., Thiebaut de Schotten, M., Corbetta, M.: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 143(7), 2173–2188 (2020)

    Google Scholar 

  20. Scarpace, L., et al.: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection [data set]. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9

  21. Shah, N., Feng, X., Lankerovich, M., Puchalski, R.B., Keogh, B.: Data from Ivy GAP [data set]. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.XLWAN6NL

  22. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  23. Smith, S.M., Brady, J.M.: Susan - a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  24. Stoecklein, V.M., et al.: Resting-state FMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro Oncol. 22(9), 1388–1398 (2020)

    Article  Google Scholar 

  25. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  26. Wang, J., et al.: Invasion of white matter tracts by glioma stem cells is regulated by a notch1-sox2 positive-feedback loop. Nat. Neurosci. 22(1), 91–105 (2019)

    Article  Google Scholar 

  27. Wei, Y., et al.: Structural connectome quantifies tumor invasion and predicts survival in glioblastoma patients. bioRxiv (2021)

    Google Scholar 

  28. Wei, Y., Li, C., Price, S.: Quantifying structural connectivity in brain tumor patients. medRxiv (2021)

    Google Scholar 

  29. Yan, H., et al.: IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360(8), 765–773 (2009)

    Article  Google Scholar 

  30. Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. Adv. Neural. Inf. Process. Syst. 32, 9240 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Y., Li, Y., Chen, X., Schönlieb, CB., Li, C., Price, S.J. (2022). Predicting Isocitrate Dehydrogenase Mutation Status in Glioma Using Structural Brain Networks and Graph Neural Networks. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics