Skip to main content

HarDNet-BTS: A Harmonic Shortcut Network for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12962))

Included in the following conference series:

  • 5694 Accesses

Abstract

Tumor segmentation of brain MRI image is an important and challenging computer vision task. With well-curated multi-institutional multi-parametric MRI (mpMRI) data, the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021 is a great bench-marking venue for world-wide researchers to contribute to the advancement of the state-of-the-art. HarDNet is a memory-efficient neural network backbone that has demonstrated excellent performance and efficiency in image classification, object detection, real-time semantic segmentation, and colonoscopy polyp segmentation. In this paper, we propose HarDNet-BTS, a U-Net-like encoder-decoder architecture with HarDNet backbone, for Brain Tumor Segmentation. We train it with the BraTS 2021 dataset using three training strategies and ensemble the resultant models to improve the prediction quality. Assessment reports from the BraTS 2021 validation server show that HarDNet-BTS delivers state-of-the-art performance (Dice_ET = 0.8442, Dice_TC = 0.8793, Dice_WT = 0.9260, HD95_ET = 12.592, HD95_TC = 7.073, HD95_WT = 3.884). It was ranked 8th in the validation phase. Its performance on the final testing dataset is consistent with that of the validation phase (Dice_ET = 0.8727, Dice_TC = 0.8665, Dice_WT = 0.9286, HD95_ET = 8.496, HD95_TC = 18.606, HD95_WT = 4.059). Inferencing an MRI case takes only 16 s of GPU time and 6GBs of GPU memory.

Supported in part by the Ministry of Science and Technology, TAIWAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Can. Imaging Archive. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Can. Imaging Archive, 286 (2017)

    Google Scholar 

  5. Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., Lin, Y.L.: Hardnet: a low memory traffic network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3552–3561 (2019)

    Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  8. Henry, T., et al.: Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: a BraTS 2020 challenge solution. arXiv preprint arXiv:2011.01045 (2020)

  9. Huang, C.H., Wu, H.Y., Lin, Y.L.: Hardnet-mseg: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021)

  10. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  11. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  12. Jia, H., Cai, W., Huang, H., Xia, Y.: H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd Place Solution to BraTS Challenge 2020 Segmentation Task (2020)

    Google Scholar 

  13. Le Duy Huynh, N.B.: A U-NET++ with pre-trained efficientnet backbone for segmentation of diseases and artifacts in endoscopy images and videos (2020)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE, October 2016

    Google Scholar 

  17. Misra, D.: Mish: a self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681 (2019). 4, 2

  18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In Icml, January 2010

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Stergiou, A., Poppe, R., Kalliatakis, G.: Refining activation downsampling with Softpool. arXiv preprint arXiv:2101.00440 (2021)

  21. Wang, Y., et al.: Modality-Pairing Learning for Brain Tumor Segmentation. arXiv preprint arXiv:2010.09277 (2020)

  22. Yuan, Y.: Automatic head and neck tumor segmentation in PET/CT with scale attention network. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 44–52. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_5

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Ping Chao and Mr. James Huang for their open-sourced HarDNet and HarDNet-MSEG, respectively. We would also like to thank Mr. Wei-Xiang Kuo, Mr. Kao-chun Pan and Mr. Kuan-Ying Lai for many fruitful discussions. This research is supported in part by a grant (no. 110-2218-E-007-043) from the Ministry of Science and Technology (MOST) of Taiwan. We thank the National Center for High-performance Computing (NCHC) for providing computational and storage resources. Without it this research is impossible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hung-Yu Wu or Youn-Long Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, HY., Lin, YL. (2022). HarDNet-BTS: A Harmonic Shortcut Network for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics