Skip to main content

A Video Data Based Transfer Learning Approach for Classification of MGMT Status in Brain Tumor MR Images

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

Patient MGMT (O\(^6\) methylguanine DNA methyltransferase) status has been identified essential for the responsiveness to chemotherapy in glioblastoma patients and therefore depicts an important clinical factor. Testing for MGMT methylation is invasive, time consuming and costly and lacks a uniform gold standard. We studied MGMT status assessment by multi-parametric magnetic resonance imaging (mpMRI) scans and tested the ability of deep learning for classification of this task. To overcome the limited number of training examples we used a transfer learning approach based on the video clip classification network C3D [30], allowing for full exploitation of three dimensional information in the MR images. MRI sequences were fused using a locally connected layer. Our approach was able to differentiate MGMT methylated from unmethylated patients with an area under the receiver operating characteristics curve (AUC) of 0.689 for the public validation set. On the private test set AUC was given by 0.577. Further studies for assessment of clinical importance and predictive power in terms of survival are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 (2021)

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  5. Chen, X., et al.: Automatic prediction of MGMT status in glioblastoma via deep learning-based MR image analysis. In: BioMed Research International 2020 (2020)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Han, L., Kamdar, M.R.: MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. In: Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium, pp. 331–342. World Scientific (2018)

    Google Scholar 

  8. Hegi, M.E., et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352(10), 997–1003 (2005)

    Article  Google Scholar 

  9. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

  10. Hendrycks, D., Lee, K., Mazeika, M.: Using pre-training can improve model robustness and uncertainty. In: International Conference on Machine Learning, pp. 2712–2721 (2019)

    Google Scholar 

  11. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  12. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  15. Lang, D.M., Peeken, J.C., Combs, S.E., Wilkens, J.J., Bartzsch, S.: Deep learning based HPV status prediction for oropharyngeal cancer patients. Cancers 13(4), 786 (2021)

    Article  Google Scholar 

  16. Lee, J., et al.: Radiomics feature robustness as measured using an MRI phantom. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  17. Li, Y., et al.: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur. Radiol. 28(7), 2960–2968 (2018). https://doi.org/10.1007/s00330-017-5267-0

    Article  Google Scholar 

  18. Lu, L., Ehmke, R.C., Schwartz, L.H., Zhao, B.: Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS ONE 11(12), e0166550 (2016)

    Article  Google Scholar 

  19. Mansouri, A., et al.: MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro Oncol. 21(2), 167–178 (2019)

    Article  Google Scholar 

  20. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  21. Ostrom, Q.T., Patil, N., Cioffi, G., Waite, K., Kruchko, C., Barnholtz-Sloan, J.S.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol. 22(Supplement_1), iv1–iv96 (2020)

    Google Scholar 

  22. Quiñonero-Candela, J., Sugiyama, M., Lawrence, N.D., Schwaighofer, A.: Dataset Shift in Machine Learning. MIT Press, Cmabridge (2009)

    Google Scholar 

  23. Rathore, S., et al.: Non-invasive determination of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status in glioblastoma (GBM) using magnetic resonance imaging (MRI) (2018)

    Google Scholar 

  24. Rebuffi, S.A., Gowal, S., Calian, D.A., Stimberg, F., Wiles, O., Mann, T.A.: Data augmentation can improve robustness. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Tan, A.C., Ashley, D.M., López, G.Y., Malinzak, M., Friedman, H.S., Khasraw, M.: Management of glioblastoma: state of the art and future directions. CA Cancer J. Clin. 70(4), 299–312 (2020)

    Google Scholar 

  27. Thomas, R.P., Recht, L., Nagpal, S.: Advances in the management of glioblastoma: the role of temozolomide and MGMT testing. Clin. Pharmacol. Adv. Appl. 5, 1 (2013)

    Google Scholar 

  28. Tixier, F., et al.: Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget 10(6), 660 (2019)

    Article  Google Scholar 

  29. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: C3D: Generic features for video analysis. http://vlg.cs.dartmouth.edu/c3d/

  30. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  31. Ugurlu, D., et al.: The impact of domain shift on left and right ventricle segmentation in short axis cardiac MR images. arXiv preprint arXiv:2109.13230 (2021)

  32. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 305–321 (2018)

    Google Scholar 

  33. Yogananda, C., et al.: MRI-based deep-learning method for determining glioma MGMT promoter methylation status. Am. J. Neuroradiol. 42(5), 845–852 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, D.M., Peeken, J.C., Combs, S.E., Wilkens, J.J., Bartzsch, S. (2022). A Video Data Based Transfer Learning Approach for Classification of MGMT Status in Brain Tumor MR Images. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics