Skip to main content

3D MRI Brain Tumour Segmentation with Autoencoder Regularization and Hausdorff Distance Loss Function

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

Manual segmentation of the Glioblastoma is a challenging task for the radiologists, essential for treatment planning. In recent years deep convolutional neural networks have been shown to perform exceptionally well, in particular the winner of the BraTS challenge 2019 uses 3D U-net architecture in combination with variational autoencoder, using Dice overlap measure as a cost function. In this work we are proposing a loss function that approximates Hausdorff Distance metric that is used to evaluate performance of different segmentation in the hopes that it will allow achieving better performance of the segmentation on new data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA Canc. J. Clin. 70(1), 7–30 (2020). https://doi.org/10.3322/caac.21590. Epub 2020 Jan 8 PMID: 31912902

    Article  Google Scholar 

  2. Ostrom, Q.T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro. Oncol. 15 Suppl:2ii–56 (2013)

    Google Scholar 

  3. Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021). arXiv:2107.02314

  4. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge (2018). arXiv:1811.02629

  5. Tiwari, A., Srivastava, S., Pant, M.: Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn. Lett. 131, 244–260 (2020). ISSN 0167-8655

    Google Scholar 

  6. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization arXiv:1810.11654

  7. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15, 29 (2015). https://doi.org/10.1186/s12880-015-0068-x

    Article  Google Scholar 

  8. Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging, 39(2), 499–513 (2019). arXiv:1904.10030

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization arXiv:1412.6980

  11. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization (2017). arXiv:1711.05101

  12. Scipy exact distance transform: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html

  13. Crum, W.R., Camara, O., Derek, L.G.H.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imag. 25(11), 1451–1461 (2006)https://doi.org/10.1109/TMI.2006.880587

  14. Ketkar, N.: Introduction to PyTorch. In: Deep Learning with Python, pp. 195–208. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_12

    Chapter  Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  16. Bakas, S., et al.: Advancing The Cancer genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  17. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Canc. Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  18. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Canc. Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

Download references

Acknowledgments

Data used in this publication were obtained as part of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge project through Synapse ID (syn25829067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir S. Fonov or D. Louis Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonov, V.S., Rosa-Neto, P., Collins, D.L. (2022). 3D MRI Brain Tumour Segmentation with Autoencoder Regularization and Hausdorff Distance Loss Function. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics