Skip to main content

Residual 3D U-Net with Localization for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

Gliomas are brain tumors originating from the neuronal support tissue called glia, which can be benign or malignant. They are considered rare tumors, whose prognosis, which is highly fluctuating, is primarily related to several factors, including localization, size, degree of extension and certain immune factors. We propose an approach using a Residual 3D U-Net to segment these tumors with localization, a technique for centering and reducing the size of input images to make more accurate and faster predictions. We incorporated different training and post-processing techniques such as cross-validation and minimum pixel threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, N., Khan, N.: A novel focal Tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 683–687 (2019)

    Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTs 2021 benchmark on brain tumor segmentation and radiogenomic classification. CoRR abs/2107.02314 (2021). https://arxiv.org/abs/2107.02314

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/sdata.2017.117

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  6. Caesar, H., Uijlings, J.R.R., Ferrari, V.: Region-based semantic segmentation with end-to-end training (2016). http://arxiv.org/abs/1607.07671

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Eelbode, T., et al.: Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 39(11), 3679–3690 (2020). https://doi.org/10.1109/TMI.2020.3002417

    Article  Google Scholar 

  9. Fidon, L., et al.: Generalised Wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 64–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_6

    Chapter  Google Scholar 

  10. Guo, D., Wang, L., Song, T., Wang, G.: Cascaded global context convolutional neural network for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 315–326. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_30

    Chapter  Google Scholar 

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  12. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  13. Islam, M., Vibashan, V.S., Jose, V.J.M., Wijethilake, N., Utkarsh, U., Ren, H.: Brain tumor segmentation and survival prediction using 3D attention UNet. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 262–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_25

    Chapter  Google Scholar 

  14. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  15. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Lebanon, G., Vishwanathan, S.V.N. (eds.) Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 38, pp. 562–570. PMLR, San Diego, California, USA, 09–12 May 2015. http://proceedings.mlr.press/v38/lee15a.html

  16. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.: Superhuman accuracy on the snemi3D connectomics challenge. arXiv abs/1706.00120 (2017)

    Google Scholar 

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark BbraTs). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation (2016)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images, January 2017

    Google Scholar 

  21. Zhao, Y.-X., Zhang, Y.-M., Liu, C.-L.: Bag of tricks for 3D MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 210–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_20

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to thank Arnaud Renard and his team, for the access to their supercomputer ROMEO, the Regional Super Computer Center hosted by the University of Reims Champagne-Ardenne. We also would like to thank Christian Chabrerie for his support throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc Duong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demoustier, M., Khemir, I., Nguyen, Q.D., Martin-Gaffé, L., Boutry, N. (2022). Residual 3D U-Net with Localization for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics