Skip to main content

Brain Tumor Segmentation from Multiparametric MRI Using a Multi-encoder U-Net Architecture

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

  • 1814 Accesses

Abstract

This paper describes our submission to Task 1 of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021, where the goal is to segment brain glioblastoma sub-regions in multi-parametric MRI scans. Glioblastoma patients have a very high mortality rate; robust and precise segmentation of the whole tumor, tumor core, and enhancing tumor subregions plays a vital role in patient management. We design a novel multi-encoder, shared decoder U-Net architecture aimed at reducing the effect of signal artefacts that can appear in single channels of the MRI recordings. We train multiple such models on the training images made available from the challenge organizers, collected from 1251 subjects. The ensemble-model achieves Dice Scores of \(0.9274 \pm 0.0930\), \(0.8717 \pm 0.2456\), and \(0.8750 \pm 0.1798\); and Hausdorff distances of \(4.77 \pm 17.05\), \(17.97 \pm 71.54\), and \(10.66 \pm 55.52\); for whole tumor, tumor core, and enhancing tumor, respectively; on the 570 test subjects assessed by the organizer. We investigate the robustness of our automated segmentation system and discuss its possible relevance to existing and future clinical workflows for tumor evaluation and radiation therapy planning.

This work was supported by the Trond Mohn Research Foundation [grant number BFS2018TMT07]. Data used in this publication were obtained as part of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge project through Synapse ID (syn25829067).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using e.g. our research PACS setup at our local hospital region, https://mmiv.no/wiml/.

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. arXiv:2107.02314 [cs] (2021). http://arxiv.org/abs/2107.02314

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Can. Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Can. Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  4. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  6. Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UNETR: Transformers for 3D medical image segmentation. arXiv:2103.10504 [cs, eess] (2021), http://arxiv.org/abs/2103.10504

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs] (2015). http://arxiv.org/abs/1512.03385

  8. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-Excitation Networks. arXiv:1709.01507 [cs] (2019). http://arxiv.org/abs/1709.01507. version: 4

  9. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  10. Jiang, Zeyu, Ding, Changxing, Liu, Minfeng, Tao, Dacheng: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, Alessandro, Bakas, Spyridon (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  11. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. arXiv:1711.01468 [cs] (2017). http://arxiv.org/abs/1711.01468

  12. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004, https://www.sciencedirect.com/science/article/pii/S1361841516301839

  13. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019). https://doi.org/10.1016/j.zemedi.2018.11.002, https://www.sciencedirect.com/science/article/pii/S0939388918301181

  14. Ma, N., Li, W., Brown, R., Wang, Y., et al.: Project-MONAI/MONAI: 0.6.0 (2021). https://doi.org/10.5281/zenodo.5083813, https://zenodo.org/record/5083813

  15. McKinley, Richard, Meier, Raphael, Wiest, Roland: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, Alessandro, Bakas, Spyridon, Kuijf, Hugo, Keyvan, Farahani, Reyes, Mauricio, van Walsum, Theo (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40

    Chapter  Google Scholar 

  16. Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000). https://doi.org/10.1109/42.836373, conference Name: IEEE Transactions on Medical Imaging

  17. Oktay, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas. arXiv:1804.03999 [cs] (2018). http://arxiv.org/abs/1804.03999

  18. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Prog. Biomed. 208, 106236 (2021). https://doi.org/10.1016/j.cmpb.2021.106236, https://www.sciencedirect.com/science/article/pii/S0169260721003102

  19. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapping 31(5), 798–819 (2009). https://doi.org/10.1002/hbm.20906, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915788/

  20. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: convolutional networks for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells, William M.., Frangi, Alejandro F.. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Wright, L., Demeure, N.: Ranger21: a synergistic deep learning optimizer. arXiv:2106.13731 [cs] (2021), http://arxiv.org/abs/2106.13731

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saruar Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alam, S., Halandur, B., Mana, P.G.L.P., Goplen, D., Lundervold, A., Lundervold, A.S. (2022). Brain Tumor Segmentation from Multiparametric MRI Using a Multi-encoder U-Net Architecture. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics