Skip to main content

MS UNet: Multi-scale 3D UNet for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

A deep convolutional neural network (CNN) achieves remarkable performance for medical image analysis. UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks, including brain tumor segmentation. The skip connection in the UNet architecture concatenates multi-scale features from image data. The multi-scaled features play an essential role in brain tumor segmentation. Researchers presented numerous multi-scale strategies that have been excellent for the segmentation task. This paper proposes a multi-scale strategy that can further improve the final segmentation accuracy. We propose three multi-scale strategies in MS UNet. Firstly, we utilize densely connected blocks in the encoder and decoder for multi-scale features. Next, the proposed residual-inception blocks extract local and global information by merging features of different kernel sizes. Lastly, we utilize the idea of deep supervision for multiple depths at the decoder. We validate the MS UNet on the BraTS 2021 validation dataset. The dice (DSC) scores of the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) are \(91.938\%\), \(86.268\%\), and \(82.409\%\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, P., Qamar, S., Hashemi, S.R., Shen, L.: Hybrid labels for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 158–166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_15

    Chapter  Google Scholar 

  2. Ahmad, P., Qamar, S., Shen, L., Saeed, A.: Context aware 3d unet for brain tumor segmentation. CoRR abs/2010.13082 (2020), https://arxiv.org/abs/2010.13082

  3. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. CoRR abs/2107.02314 (2021). https://arxiv.org/abs/2107.02314

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. 2017 (2017)

    Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  6. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

  7. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.0 (2018). http://arxiv.org/abs/1811.02629

  8. Ben Naceur, M., Akil, M., Saouli, R., Kachouri, R.: Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Med. Image Anal. 63, 101692 (2020). https://doi.org/10.1016/j.media.2020.101692, https://www.sciencedirect.com/science/article/pii/S1361841520300578

  9. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018). https://doi.org/10.1109/TMI.2018.2835303

  10. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. CoRR abs/1804.0 (2018). http://arxiv.org/abs/1804.02967

  11. Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.: 3D deeply supervised network for automatic liver segmentation from CT volumes. CoRR abs/1607.00582 (2016). http://arxiv.org/abs/1607.00582

  12. Feng, X., Tustison, N., Meyer, C.: Brain tumor segmentation using an ensemble of 3D U-nets and overall survival prediction using radiomic features. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 279–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_25

    Chapter  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.0 (2015). http://arxiv.org/abs/1512.03385

  14. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.0 (2016). http://arxiv.org/abs/1608.06993

  15. Isensee, F., Jaeger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnu-Net for brain tumor segmentation. CoRR abs/2011.00848 (2020). https://arxiv.org/abs/2011.00848

  16. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. CoRR abs/1802.1 (2018). http://arxiv.org/abs/1802.10508

  17. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  18. Jia, H., Cai, W., Huang, H., Xia, Y.: H2NF-net for brain tumor segmentation using multimodal MR imaging: 2nd place solution to brats challenge 2020 segmentation task. CoRR abs/2012.15318 (2020). https://arxiv.org/abs/2012.15318

  19. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  20. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. CoRR abs/1711.0 (2017). http://arxiv.org/abs/1711.01468

  21. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  22. Liu, Z., et al.: CANet: context aware network for brain glioma segmentation. IEEE Trans. Med. Imaging 40(7), 1763–1777 (2021). https://doi.org/10.1109/TMI.2021.3065918

    Article  Google Scholar 

  23. McKinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40

    Chapter  Google Scholar 

  24. McKinley, R., Rebsamen, M., Meier, R., Wiest, R.: Triplanar ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 379–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_36

    Chapter  Google Scholar 

  25. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  26. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. CoRR abs/1606.0 (2016). http://arxiv.org/abs/1606.04797

  27. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. CoRR abs/1810.1 (2018). http://arxiv.org/abs/1810.11654

  28. Pati, S., et al.: The federated tumor segmentation (FETS) challenge. CoRR abs/2105.05874 (2021). https://arxiv.org/abs/2105.05874

  29. Reina, G.A., et al.: OpenFL: an open-source framework for federated learning. CoRR abs/2105.06413 (2021). https://arxiv.org/abs/2105.06413

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.0 (2015). http://arxiv.org/abs/1505.04597

  31. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 12598 (2020). https://doi.org/10.1038/s41598-020-69250-1

  32. Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., Patel, V.M.: KiU-net: overcomplete convolutional architectures for biomedical image and volumetric segmentation. IEEE Trans. Med. Imaging 1 (2021). https://doi.org/10.1109/TMI.2021.3130469

  33. Wang, P., et al.: Understanding convolution for semantic segmentation. CoRR abs/1702.08502 (2017). http://arxiv.org/abs/1702.08502

  34. Wang, Y., et al.: Modality-pairing learning for brain tumor segmentation. CoRR abs/2010.09277 (2020). https://arxiv.org/abs/2010.09277

  35. Yuan, Y.: Automatic brain tumor segmentation with scale attention network. CoRR abs/2011.03188 (2020). https://arxiv.org/abs/2011.03188

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant No. 91959108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvez Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, P., Qamar, S., Shen, L., Rizvi, S.Q.A., Ali, A., Chetty, G. (2022). MS UNet: Multi-scale 3D UNet for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics