Skip to main content

Federated Learning for Brain Tumor Segmentation Using MRI and Transformers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Abstract

This work focuses on training a deep learning network in a federated learning framework. The Federated Tumor Segmentation Challenge has 2 separate tasks. Task-1 was to design an aggregation logic for a given network, which is trained in a federated learning framework. Task-2 of the challenge was to train a network that is robust and generalizable in a federated testing environment. 341 subjects were used for training both tasks of the challenge. This data was distributed across 17 collaborators, which were then used to train an individual network for each collaborator. A new weight aggregation logic was developed. The network weights in this logic were determined based on the average validation dice scores of each collaborator. A concise model was obtained using the developed weighted aggregation logic. The Dice scores for task-1 on the validation dataset for whole tumor, tumor core, and enhancing tumor were 0.767, 0.612, and 0.628 respectively. The Dice scores for task-2 on the validation dataset for whole tumor, tumor core, and enhancing tumor were 0.874, 0.773, and 0.721 respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ostrum, Q., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17, v1–v62 (2015)

    Article  Google Scholar 

  2. Pati, S., et al.: The Federated Tumor Segmentation (FeTS) Challenge. arXiv:2105.05874 (2021)

  3. Bonawitz, K., et al.: Towards Federated Learning at Scale: System Design. arXiv:1902.01046 (2019)

  4. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  5. Yang, T., et al.: Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv:1812.02903 (2018)

  6. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10, 1–19 (2019)

    Google Scholar 

  7. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3, 1–7 (2020)

    Article  Google Scholar 

  8. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  9. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). vol. 34, pp. 1993–2024 (2014)

    Google Scholar 

  10. Isensee, F., et al.: Abstract: nnU-Net: self-adapting framework for u-net-based medical image segmentation. In: Handels, H., Deserno, T.M., Maier, A., Maier-Hein, K.H., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019: Algorithmen – Systeme – Anwendungen. Proceedings des Workshops vom 17. bis 19. März 2019 in Lübeck, pp. 22–22. Springer Fachmedien Wiesbaden, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25326-4_7

    Chapter  Google Scholar 

  11. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  12. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 (2018)

  13. Dosovitskiy, A., et al.: An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929 (2020)

  14. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-deeplab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV, pp. 108–126. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  15. Reina, G.A., et al.: OpenFL: An Open-source Framework for Federated Learning. arXiv:2105.06413 (2021)

  16. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018)

    Google Scholar 

  17. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  18. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive 286 (2017)

    Google Scholar 

  19. Bakas, S., Akbari, H., Sotiras, A.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive. (2017)

    Google Scholar 

  20. Davatzikos, C., et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5, 011018 (2018)

    Article  Google Scholar 

  21. Pati, S., et al.: The cancer imaging phenomics toolkit (captk): technical overview. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II, pp. 380–394. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_38

    Chapter  Google Scholar 

  22. Rathore, S., et al.: Brain cancer imaging phenomics toolkit (brain-CaPTk): an interactive platform for quantitative analysis of glioblastoma. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 133–145. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_12

    Chapter  Google Scholar 

  23. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31, 798–819 (2010)

    Article  Google Scholar 

  24. Yushkevich, P.A., Pluta, J., Wang, H., Wisse, L.E., Das, S., Wolk, D.: Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2-weighted MRI. Alzheimers Dement. 7, P126–P127 (2016)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Thakur, S., et al.: Brain extraction on MRI scans in presence of diffuse glioma: multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. Neuroimage 220, 117081 (2020)

    Article  Google Scholar 

  27. Bangalore Yogananda, C.G., et al.: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol. 22, 402–411 (2020)

    Google Scholar 

  28. Murugesan, G.K., et al.: Multidimensional and multiresolution ensemble networks for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II, pp. 148–157. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_14

    Chapter  Google Scholar 

  29. Nalawade, S.S., et al.: Brain Tumor IDH, 1p/19q, and MGMT Molecular Classification Using MRI-based Deep Learning: Effect of Motion and Motion Correction. bioRxiv (2020)

    Google Scholar 

  30. Nalawade, S., et al.: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning. J. Med. Imaging 6(1–13), 13 (2019)

    Google Scholar 

  31. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  32. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  33. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Wang, Q., Shi, Y., Suk, Heung-Il., Suzuki, K. (eds.) machine Learning in Medical Imaging, pp. 379–387. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_44

    Chapter  Google Scholar 

  34. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Nalawade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nalawade, S. et al. (2022). Federated Learning for Brain Tumor Segmentation Using MRI and Transformers. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics